Пластический обмен: характеристика, функции, этапы. Пластический обмен. Биосинтез белка. Роль ядра, рибосом и эндоплазматической сети в этом процессе. Матричный характер реакций биосинтеза Пластический обмен тип химической реакции

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Вопрос 1. Какие процессы происходят в клетке?

В организме человека, в каждой его клетке, происходят сложные химические превращения, образуются одни вещества, разрушаются другие. Для одних процессов необходима энергия, в ходе других она, наоборот, выделяется.

Вопрос 2. Что является внешним проявлением жизненных процессов?

Проявлением жизненных процессов, протекающих в клетках, является обмен веществ между организмом и окружающей средой. Из внешней среды организм получает кислород, органические вещества, минеральные соли, воду. Во внешнюю среду отдает конечные продукты обмена веществ: углекислый газ, излишек воды, минеральных солей, а также мочевину, соли мочевой кислоты и некоторые другие вещества.

Вопрос 3. Что получает организм из внешней среды?

В процессе этого обмена наш организм получает необходимую для жизни энергию, заключенную в органических веществах (продуктах животного и растительного происхождения). Часть образующейся энергии организм отдает в окружающее пространство: она рассеивается в виде тепла.

Обмен веществ между организмом и окружающей средой - необходимое условие существования живых организмов, это один из основных признаков живого.

Вопрос 4. Какие вещества организм выделяет во внешнюю среду?

Часть образующейся энергии организм отдает в окружающее пространство: она рассеивается в виде тепла. Также продукты обмена, углекислый газ и др.

Вопрос 5. Что называется пластическим обменом?

Пластический обмен (от греч. «пластика» - лепить) - совокупность процессов, приводящих к усвоению веществ и накоплению энергии.

Вопрос 6. Что происходит в организме за счет пластического обмена?

За счет пластического обмена происходит рост, развитие и деление каждой клетки.

Вопрос 7. В чем суть энергетического обмена?

Процесс, в ходе которого происходит распад части поступающих в клетки органических веществ с выделением энергии, называется энергетическим обменом.

Так необходимая для организма энергия поступает в организм с пищей, содержащей сложные органические вещества. В результате целого ряда превращений эти вещества, но уже в более простом, доступном для организма виде, попадают в клетки. Здесь они расщепляются. Например, глюкоза- до воды и углекислого газа. Освободившаяся при этом энергия используется клетками для поддержания своей жизнедеятельности или выполнения той или иной работы: сокращения мышц, проведения нервных импульсов, создания новых веществ.

Вопрос 8. Какова биологическая роль энергетического обмена?

Освободившаяся энергия при энергетическом обмене используется клетками для поддержания своей жизнедеятельности или выполнения той или иной работы. Для поддержания жизни всего организма.

Вопрос 9. Что называется обменом веществ и энергии?

Обмен веществ и энергии – важнейшая функция живого организма и один из важнейших признаков жизни. Заключается в поступлении в организм веществ, необходимых для построения и обновления структурных элементов клеток и тканей, а также выработке энергии для обеспечения жизненных процессов, и в удалении из него образовавшихся продуктов распада.

ПОДУМАЙТЕ

Почему пластический и энергетический обмены неразрывно связаны между собой и являются двумя сторонами единого процесса обмена веществ и энергии?

Процессы пластического и энергетического обменов происходят одновременно, они тесно взаимосвязаны. Это две стороны единого процесса обмена веществ и энергии.

Если смотреть по порядку, то усвоение веществ организмом это пластический обмен, распад части поступающих в клетки органических веществ с выделением энергии это энергетический обмен, накопление энергии в клетках это энергетический обмен, а при этом идет рост и развитие молодого организма, а это пластический обмен.

Т. е. пластический и энергетический обмены – это части одного глобального и сложного процесса (процесс обмена веществ и энергии), который проходит в организме.

Пластический обмен носит еще название анаболизма или ассимиляции и является совокупностью всех ферментативных биохимических реакций, в результате которых синтезируются биоорганические соединения.

Пластический обмен включает биосинтез протеинов, липидов, углеводов, нуклеиновых кислот. При анаболизме проходит также процесс фотосинтеза и хемосинтеза.

Если говорить о пластическом обмене в организме человека, то сразу надо сказать, что все которые попадают в организм с пищей, имеют высокомолекулярный состав, поэтому не могут усваиваться. В процессе пищеварения данные соединения распадаются на отдельные мономеры, которые уже используются для синтеза специфических высокомолекулярных веществ, присущих человеческому организму.

Одним из самых важных классов соединений являются белки. Белковую природу имеют все ферменты организма, а также некоторые гормоны. Белками являются гемоглобин (обеспечивает дыхательную функцию), антитела (обеспечивают иммунный ответ организма), актин и миозин (предопределяют сокращение мышц), коллаген и кератин (выполняют структурную функцию в организме).

Учитывая важную роль белков для функционирования организма, стоит рассмотреть процесс их синтеза как важной части пластического обмена.

Надо сказать, что все живые организмы отличаются между собой наличием специфических протеинов, которые состоят из аминокислот. Именно взаиморасположение аминокислот определяет специфические свойства белковых соединений.

Белки синтезируются в клеточной цитоплазме на специальных органеллах - рибосомах. Данные структуры состоят из большой и малой субъединиц. Они принимают участие в процессах синтеза протеинов. Важную роль в биосинтезе белков играют нуклеиновые кислоты, к которым относится ДНК и РНК. Так, структурные единицы ДНК (гены) содержат закодированную информацию о первичной структуре белков (последовательность аминокислот), а РНК отвечает за ее считывание и транспорт аминокислот к месту, где идет синтез белка.

Синтез протеинов происходит в два этапа: транскрипция и трансляция. В основе транскрипции лежит процесс переноса информации о с ДНК на РНК.

Трансляция - синтез полипептидной цепи с соответствующей последовательностью аминокислот согласно при участии матричной (информационной) РНК. Весь процесс трансляции проходит три стадии: инициации, элонгации, терминанации. В результате трансляции образуется белок с первичной структурой.

Стоит вспомнить, что пластический обмен - это не только синтез белков или других но и фотосинтез, который является сложным и многоступенчатым процессом, он проходит в 2 фазы.

Световая фаза проходит в хлоропластах (на тилакоидах), при этом образуется АТФ и выделяется молекулярный кислород, а темновая фаза проходит в основном веществе хлоропластов и обуславливает поглощение углекислого газа и образование углеводов.

Думаю, не стоит останавливаться на роли фотосинтеза, достаточно сказать, что благодаря данному процессу ежегодно образуется около 150 млрд. т веществ органической природы, а также примерно 200 млрд. т кислорода.

Надо сказать, что пластический обмен тесно связан с энергетическими процессами, которые происходят в организме. Так, энергетический обмен (катаболизм) является противоположным процессом анаболизма и включает в себя все реакции расщепления, когда сложные соединения распадаются на простые, а высокомолекулярные вещества превращаются в ряд низкомолекулярных. При этом высвобождается энергия, которая используется в процессах пластического обмена.

Так, пластический и энергетический обмен в клетке составляют основу общего обмена - метаболизма, который включает все процессы синтеза и распада веществ.

Метаболизм, то есть совокупность всех химических реакций, происходящих в организме, включает в себя энергетический и пластический обмен. Первый - это реакции, направленные на получение энергии вследствие расщепления сложных органических соединений на более простые. Он еще называется катаболизмом. Пластический обмен называют еще анаболизмом. Он подразумевает реакции, с помощью которых организм синтезирует нужные ему сложные химические вещества из простых с использованием энергии. Таким образом, получается, что, добыв энергию в процессе катаболизма, часть её организм тратит на синтез новых органических веществ.

Энергетический обмен: особенности и этапы

Этот вид обмена веществ осуществляется в три стадии: подготовительная, анаэробное брожение, или гликолиз, и клеточное дыхание. Рассмотрим их более подробно:

Пластический обмен — это что? Какие у него особенности?

Рассмотрев процесс катаболизма, можно перейти к описанию анаболизма, который является важной составляющей обмена веществ. Вследствие этого процесса образуются вещества, из которых построена клетка и весь организм в целом, которые могут служить в качестве гормонов или ферментов и т. д. Пластический обмен (он же биосинтез, или анаболизм) происходит, в отличие от катаболизма, исключительно в клетке. Он включает в себя три разновидности: фотосинтез, хемосинтез и биосинтез белков. Первый используется только растениями и некоторыми фотосинтезирующими бактериями. Такие организмы называются автотрофами, так как сами вырабатывают для себя органические соединения из неорганических. Второй используется определенными бактериями, в том числе и анаэробными, для жизни которых не требуется кислород. Формы жизни, использующие хемосинтез, называются хемотрофами. Животные и грибы относятся к гетеротрофам — существам, которые получают органические вещества из других организмов.

Фотосинтез

Это процесс, который, по сути, является основой жизни на планете Земля. Всем известно, что растения забирают из атмосферы углекислый газ и отдают кислород, но давайте более подробно рассмотрим, что же происходит во время фотосинтеза. Этот процесс осуществляется посредством реакции, которая предусматривает образование глюкозы и кислорода из углекислого газа и воды. Очень важный фактор - наличие солнечной энергии. Во время такого химического взаимодействия из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна - глюкозы.

Где происходит этот процесс?

Местом проведения подобного рода реакции являются зеленые листья растений, а точнее хлоропласты, которые содержатся в их клетках. В этих органеллах содержится хлорофилл, благодаря которому и происходит фотосинтез. Данное вещество также обеспечивает зеленый цвет листков. Хлоропласт окружен двумя мембранами, а в его цитоплазме расположены граны — стопки из тилакоидов, которые имеют собственную мембрану и содержат хлорофилл.

Хемосинтез

Хемосинтез — это также пластический обмен. только характерен он для микроорганизмов, в том числе и серных, нитрифицирующих и железобактерий. Они используют энергию, полученную в процессе окисления определенных веществ, для восстановления углекислого газа до органических соединений. Веществами же, которые окисляются данными бактериями в процессе энергетического обмена, являются сероводород для первых, аммиак для вторых и закись железа для последних.

Биосинтез белков

Обмен белков в организме подразумевает расщепление тех, которые были употреблены в пищу, на аминокислоты и построение из последних своих собственных белков, свойственных именно данному живому существу. Пластический обмен - это синтез белков клеткой, он включает в себя два основных процесса: транскрипцию и трансляцию.

Транскрипция

Это слово многим известно из уроков английского языка, однако в биологии данный термин имеет совсем другое значение. Транскрипция — это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. Осуществляется он в ядре клетки и насчитывает три стадии: образование первичного транскрипта, процессинг и сплайсинг.

Трансляция

Этот термин обозначает перенос зашифрованной на иРНК информации о структуре белка на синтезирующийся полипептид. Местом для проведения данного процесса служит цитоплазма клетки, а именно, рибосома — специальный органоид, который отвечает за синтез белков. Это органелла овальной формы, состоящая из двух частей, которые соединяются в присутствии иРНК.

Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом под названием аминоацил Т-РНК-синтетаза. Для этого также используется АТФ. Впоследствии образуется аминоациладенилат. Далее следует процесс присоединения активированной аминокислоты к транспортной РНК, при этом выделяется АМФ (аденозинмонофосфат). Затем, на третьем этапе, образованный комплекс соединяется с рибосомой. Далее происходит включение аминокислот в структуру белка в определенном порядке, после чего тРНК высвобождается.

Обмен веществ и энергии является одним из основных признаков живого вещества. Обмен веществ — это совокупность процессов химического превращения веществ от момента их поступления в организм до выделения конечных продуктов обмена. В клетках постоянно идет синтез сложных органических соединений с использованием энергии и одновременно с этим — их расщепление и окисление с выделением энергии и образованием низкомолекулярных веществ.

Обмен веществ — совокупность реакций пластического (ассимиляции) и энергетического (диссимиляции) обменов.

Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых. Реакции пластического обмена являются эндотермическими (идут с поглощением энергии).

Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ: белков — до O 2 , H 2 O, NH 2 или мочевины; жиров и углеводов — до CO 2 , и H 2 O.

Источником энергии для организма являются органические вещества: углеводы, жиры, белки. Образовавшаяся в реакциях энергетического обмена химическая энергия преобразуется в дальнейшем в электрическую, тепловую и механическую энергию. Для нормального обмена необходимы также вода, минеральные соли и витамины.

Этапы обмена веществ :

Ассимиляция и диссимиляция неразрывно связаны между собой:

  • для ассимиляции необходима энергия, которая образуется в реакциях энергетического обмена;
  • для реакций диссимиляции необходимы ферменты, которые образуются в реакциях пластического обмена;
  • ассимиляция и диссимиляция протекают в клетке одновременно и заключительные этапы одного обмена являются начальными стадиями другого.

Водно-минеральный обмен в организме

Вода входит в состав клеток, межклеточного вещества, тканевой жидкости и лимфы. Она составляет 65-70% массы тела человека (у детей больше), а плазма крови и лимфа содержат свыше 90% воды.

Значение воды в организме :

  • определяет физические свойства клетки (объем, массу, тургор);
  • универсальный растворитель;
  • основной компонент внутренней среды, место протекания большинства биохимических реакций в клетке;
  • участник реакций гидролиза, АТФ + H 2 O = АДФ + H 3 PO 4 < 40кДж;
  • участвует в транспорте веществ: поглощение питательных веществ, их передвижение и выведение конечных продуктов обмена происходит в виде водных растворов;
  • обеспечивает терморегуляцию, обеспечивая одинаковую температуру во всех частях тела организма.

Связанная вода образует сольватные (водные) оболочки вокруг белков, благодаря чему белки не слипаются друг с другом. Гидрофобно-гидрофильные взаимодействия между разными частями белковой молекулы обеспечивают образование ее четвертичной структуры.

Суточная потребность человека в воде меняется в зависимости от условий внешней среды и в среднем составляет 2-2,5 л.

Вода поступает в организм при питье (около 1 л), с пищей (около 1 л) и небольшое количество (300-350 мл) ее образуется в результате окисления органических веществ.

Вода всасывается в кишечнике (тонком и толстом), и небольшое количество ее может всасываться в ротовой полости и желудке.

Из организма вода выводится с мочой (1,2-1,5 л), с потом (500-700 мл), с выдыхаемым воздухом (350-800 мл), с калом (100-150 мл).

Минеральные соли в организме могут быть в твердом состоянии в виде кристаллов — Ca 3 (PO 4) 2 , и CaCO 3 , в костной ткани; в диссоциированном состоянии в виде катионов и анионов.

Анионы фосфорной и угольной кислот обладают буферными свойствами, т.е. способны поддерживать pH (концентрацию ионов водорода) на определенном уровне. Анионы фосфорной кислоты HPO 4 2- создают фосфатную буферную систему, поддерживающую внутри клеток слабокислую среду (pH = 6,9), а угольная кислота и ее анионы HCO 3 — создают бикарбонатную буферную систему, которая поддерживает слабощелочную реакцию внеклеточной среды (например, плазма крови) (pH = 7,4).

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке (K + , Na + ,Cl —), в процессах мышечного сокращения, свертывании крови (Ca 2+), другие необходимы для синтеза важных органических веществ. Например, остатки фосфорной кислоты входят в состав нуклеотидов, АТФ, ион Fe 2+ — в состав гемоглобина, Mg 2+ — в состав ферментов. Ионы NO 3 — , NH 4 + являются источником атомов азота, ион SO 4 2- — атомов серы, которые необходимы для синтеза аминокислот. Минеральные соли создают осмотическое давление, которое обеспечивает транспорт веществ между клетками организма.

Общее количество минеральных солей в организме человека — около 4,5%.

Потребности организма в минеральных солях удовлетворяются продуктами питания. Железа много в яблоках, иода — в морской капусте, кальция — в молочных продуктах. Человек нуждается в постоянном поступлении натрия и хлора. Поваренную соль (хлористый натрий) добавляют к пище (до 10 г в сутки). В некоторых регионах в поваренную соль добавляют иод (в связи с недостатком его в воде и местных продуктах питания).

Всасывание минеральных солей происходит вместе с водой в основном в толстом кишечнике. Попавшие в кровь минеральные соли доставляются клеткам организма.

Излишки минеральных солей выводятся из организма с мочой, потом и калом.

Обмен белков

Все белки построены из 20 аминокислот, но, несмотря на это, разнообразие белковых молекул огромно. Они обладают специфичностью, которая определяется количеством и порядком расположения аминокислот, различным сочетанием аминокислот, способностью белков присоединять другие вещества.

Роль белков в организме :

  • входят в состав мембран и органелл клетки;
  • из кератина и коллагена состоят хрящи, сухожилия, волосы, ногти;
  • некоторые белки способны присоединять и переносить различные вещества:
    • гемоглобин переносит кислород и диоксид углерода;
    • альбумины крови транспортируют жирные кислоты;
    • глобулины — ионы металлов и гормоны;
  • актин и миозин входят в состав миофибрилл мышечной ткани;
  • иммуноглобулины (антитела) обеспечивают защитные реакции иммунитета, протромбин и фибриноген участвуют в защитной реакции свертывания крови;
  • некоторые белки, встроенные в плазмалемму, способны изменять свою пространственную конфигурацию под действием факторов внешней среды (родопсин палочек сетчатки глаза);
  • многие гормоны имеют белковую природу (инсулин, глюкагон, АКТГ);
  • все ферменты являются белками (трипсин, ДНК-полимераза).

Суточная потребность в белках составляет 72-92 г. Источником белков для человека служат преимущественно продукты животного. Большое количество белков содержится в мясе (от 14 до 21%), рыбе, молоке и продуктах его переработки. Продукты растительного происхождения содержат 8-23% белков (бобовые растения).

По содержанию необходимых для организма аминокислот белки делятся на полноценные (белки молока, мяса, рыбы и др.) и неполноценные , которые не содержат хотя бы одной из незаменимых кислот. Особенно важны 10 аминокислот, которые не могут синтезироваться в организме и называются незаменимыми (лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин и гистидин). Отсутствие в пище некоторых из них приводит к нарушению синтеза белков. При отсутствии в пище лизина замедляется рост ребенка, при недостатке валина — нарушается чувство равновесия и т.д.

Протеолитические ферменты (пепсин и химозин желудочного сока, трипсин и химотрипсин сока поджелудочной железы, энтерокиназа, аминопептидаза, карбоксипептидаза кишечного сока) расщепляют белки до полипептидов и аминокислот.

Аминокислоты всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по всему организму. В клетках из аминокислот образуются белки, свойственные данному организму. При избытке белки преобразуются в углеводы и жиры. Часть аминокислот, не использованных в синтезе белка, окисляется с освобождением энергии (17,6 кДж на 1 г вещества) и образованием воды, диоксида углерода, аммиака и др. Аммиак в печени обезвреживается и превращается в мочевину.

Продукты диссимиляции белков выводятся из организма с мочой, потом и частично с выдыхаемым воздухом.

Обмен углеводов

Углеводы — представляют собой первичные продукты фотосинтеза и исходные продукты для биосинтеза всех других органических веществ. Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Значение углеводов в организме :

  • олигосахариды входят в состав цитоплазматической мембраны клетки и образуют гликокаликс;
  • гликоген составляет энергетический запас в клетках;
  • глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе дыхания;
  • моносахариды являются основой для синтеза многих органических веществ в клетке — полисахаридов, нуклеиновых кислот и др.

В сутки человек должен получать 358-484 г углеводов. Основным их источником являются продукты растительного происхождения (картофель, хлеб, фрукты и др.). Углеводы в организме могут образовываться из белков и жиров.

Амилолитические ферменты (амилаза и мальтаза слюны, амилаза, мальтаза, лактаза, сахараза сока поджелудочной железы и тонкого кишечника) расщепляют углеводы до дисахаридов и моносахаридов.

Моносахариды всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по всему организму. Уровень глюкозы в крови относительно постоянен и составляет 4,4-7,0 ммоль/л.

Избыток глюкозы превращается в печени в гликоген. При чрезмерном поступлении в организм углеводов они могут превращаться в жиры.

В клетках глюкоза окисляется до диоксида углерода и воды, которые удаляются с выдыхаемым воздухом, мочой, потом, при этом выделяется энергия (17,6 кДж на 1 г глюкозы).

Обмен жиров

Липиды — органические соединения, не растворимые в воде, но хорошо растворимые в органических растворителях (эфире, бензине, бензоле, хлороформе и др.). Из всех биомолекул липиды обладают наименьшей относительной молекулярной массой. Молекула жира образована молекулой трехатомного спирта глицерина и присоединенными к ней эфирными связями тремя молекулами высших карбоновых кислот: пальмитиновой, стеариновой, арахидоновой, олеиновой, линолевой, линоленовой.

Значение жиров и жироподобных веществ в организме :

  • входят в состав клеточных мембран, цитоплазмы, ядра;
  • в форме липидов хранится значительная часть энергетических запасов организма;
  • накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм и отдельные органы от механических повреждений;
  • благодаря низкой теплопроводности слой подкожного жира помогает сохранять тепло;
  • многие биологически активные вещества (гормоны и витамины) являются стероидами (тестостерон у мужчин и прогестерон у женщин, кортикостероиды, витамин D).

Суточная потребность в жирах составляет 81-110 г. Жиры поступают в организм с растительной и животной пищей. Животные жиры поступают в организм в виде сливочного масла, сыра, сметаны, свиного сала. Растительные жиры поступают в организм в виде растительного масла.

Липолитические ферменты (липазы желудочного сока, сока поджелудочной железы и тонкого кишечника) расщепляют жиры до глицерина и жирных кислот. Жирные кислоты соединяются со щелочами и желчными кислотами, омыляются, образуя растворимые соли, которые всасываются через стенки ворсинок. В ворсинках из глицерина и жирных кислот синтезируются жиры, поступающие в лимфатические капилляры ворсинок тонкого кишечника. Жиры всасываются в лимфу, затем поступают в кровь и разносятся по всем клеткам.

Часть жира, попавшего в клетки, является строительным материалом. Большая же его часть откладывается в подкожной клетчатке, в сальнике, печени, мышцах. Жиры также являются важным источником энергии: при окислении 1 г жира выделяется 38,9 кДж энергии. В организме человека жиры могут синтезироваться из углеводов и белков.

Конечными продуктами окисления жиров являются диоксид углерода и вода, которые удаляются с выдыхаемым воздухом, мочой, потом.

Витамины и их роль в обмене веществ. Гиповитаминозы

Витамины — низкомолекулярные вещества, обладающие большой биологической активностью, необходимые для жизнедеятельности организмов.

В 1881 г. русским ученым Н. И. Луниным было обнаружено, что мыши погибают, если их кормить пищевой смесью, состоящей из очищенных продуктов. Если же добавить в рацион 1 мл молока, мыши остаются здоровыми. В 1911-1912 гг. польский ученый К. Функ выделил препарат из отрубей и назвал его витамином. С этого времени началось интенсивное изучение витаминов.

Витамины обозначают буквами латинского алфавита А, В, С, D, Е, Р и т. д. Натуральные (естественные) витамины содержатся в продуктах растительного и животного происхождения и, за редким исключением, не синтезируются в организме человека. Витамины бывают водорастворимые (C, P, группы B) и жирорастворимые (A, D, E, K).

Свойства витаминов :

  • входят в состав молекул многих ферментов и некоторых физиологически активных веществ;
  • непрочные соединения: быстро разрушаются при нагревании пищевых продуктов;

Отсутствие витаминов в организме называется авитаминозом , недостаток — гиповитаминозом . Избыточное поступление витаминов в организм — гипервитаминоз — наблюдается при употреблении синтетических препаратов витаминов. Наиболее токсичны витамины А и D. Иногда гипервитаминоз А возникает при приеме в пищу продуктов, содержащих большое количество этого витамина (овощи, печень морских животных). Из водорастворимых витаминов наиболее токсичен B 12 (в больших дозах вызывают сильные аллергические реакции).

Витамин А (ретинол) участвует в окислительно-восстановительных реакциях. Содержится в сливочном масле, печени, молоке, рыбьем жире. В овощах (морковь) содержится провитамин A — каротин. Он превращается в витамин A в печени. Суточная доза — 1,5 мг.

Признаки гипо- и авитаминоза:

  • задержка роста;
  • сухость и помутнение роговицы;
  • «куриная слепота» (нарушение сумеречного зрения);
  • сухость кожи;
  • снижение сопротивляемости к заболеваниям.

Витамин D (антирахитический, кальциферол) стимулирует образование костной ткани, регулирует обмен кальция и фосфора. Содержится в сливочном масле, печени трески, курином желтке, рыбьем жире. Может образовываться в коже из эргостерина (провитамин D) под действием ультрафиолетовых лучей. Суточная доза — 0,01-0,02 мг.

Признаки гипо- и авитаминоза:

  • рахит:
    • размягчение костей;
    • искривление костей ног;
    • уплощение груди;
    • незарастание родничков;
    • позднее появление зубов у детей.

Витамин E (токоферол) предохраняет мембраны клеток и митохондрий от повреждений, участвует в окислительно-восстановительных процессах, в обмене белков, сокращении мышц, укрепляет стенки сосудов, разрушает свободные радикалы. Содержится в зеленых листьях овощей, орехах, семечках, гречневой крупе, проросших ростках пшеницы, в яйцах, растительных маслах. Суточная доза — 10-12 мг.

Признаки гипо- и авитаминоза:

  • дистрофия скелетных мышц;
  • нарушение половой функции.

Витамин K (викасол) участвует в свертывании крови. Синтезируется микрофлорой кишечника, содержится в капусте, зеленых томатах, шпинате, ягодах рябины. Из животных продуктов его источником является печень. Суточная доза — 1 мг.

Признаки гипо- и авитаминоза:

  • замедление свертывания крови;
  • самопроизвольные кровотечения.

Витамин C (аскорбиновая кислота) участвует в окислительно-восстановительных реакциях. Содержится в смородине, лимонах, клюкве, зеленом луке, картофеле. Суточная доза — 50 мг.

Признаки гипо- и авитаминоза:

  • цинга:
    • повышенная утомляемость;
    • кровоточивость десен;
    • выпадение зубов;
    • кровоизлияния;
    • снижение иммунитета.

Витамин B 1 (тиамин) участвует в регуляции обмена белков, жиров и углеводов. Содержится в дрожжах, орехах, неполированном рисе, печени, желтке куриного яйца. Суточная доза — 2,5 мг. Гипо- и авитаминоз — бери бери (поражение нервной системы с параличом конечностей и атрофией мышц).

Витамин B 2 (рибофлавин) участвует в регуляции обмена веществ, в окислительно-восстановительных реакциях. Содержится в мясе, яйцах, молоке, печени, фруктах, овощах. Суточная доза — 2,5 мг. Признаки гипо- и авитаминоза: поражение роговицы, «заеды» (ангулярный стоматит), задержка роста.

Витамин B 3 (пантотеновая кислота) является коферментом ключевых реакций метаболизма жиров. Содержится в пчелином маточном молочке и пивных дрожжах. Достаточно много его в печени животных, яичном желтке, гречихе, овсе, бобовых. Суточная доза — 10-15 мг. Признаки гипо- и авитаминоза: психоэмоциональная неустойчивостью, склонность к обморокам, изменение походки, чувство жжения стоп.

Витамин B 5 (витамин PP, никотиновая кислота) входит в состав ферментов, являющихся катализаторами окислительно-восстановительных реакций, обмена белков и т-РНК. Источником витамина являются животные (особенно печень, мясо) и многие растительные продукты (рис, хлеб, картофель). Суточная доза — 10-20 мг. Признаки гипо-и авитаминоза: дерматит (воспаление открытых участков кожи), диарея (поносы), деменция (слабоумие).

Витамин B 6 (пиридоксин) участвует в регуляции обмена аминокислот. Содержится в дрожжах, рисе, мясе, бобах. Суточная доза — 2,5 мг. Признаки гипо- и авитаминоза: воспаление кожи и нервов.

Витамин B 9 (фолиевая кислота, витамин B c) участвует в обмене белков и нуклеиновых кислот. Витамина много в лиственных овощах, например в шпинате. Он содержится в салате, капусте, томатах, землянике. Богаты им печень и мясо, яичный желток. Суточная доза — 0,3-1 мг. Признаки гипо- и авитаминоза: анемия — в крови появляются большие незрелые кроветворные клетки; снижается количество эритроцитов и гемоглобина в крови.

Витамин B 12 (антианемический) — участвует в регуляции обмена белков, жиров и углеводов. Содержится в печени, мясе, твороге, яйцах. Суточная доза — 200-300 мкг. Гипо- и авитаминоз — злокачественное малокровие (анемия).

Витамин H (биотин) — участвует в транспорте диоксида углерода, в обмене углеводов и жиров. Содержится в молоке, яйцах, печени, цветной капусте, грибах, синтезируется бактериями кишечника. Суточная доза — 150-200 мкг. Гипо- и авитаминоз — заболевания кожи, выпадение волос.

Методами сохранения витаминов в пищевых продуктах являются :

  • консервирование (метод сохранения продуктов со сравнительно небольшими потерями витаминов);
  • замораживание с образованием в цитоплазме клеток кристаллов льда (быстрое замораживание хорошо сохраняет витамины);
  • в наибольшей степени обеспечивает сохранность витаминов вакуумная сушка. Проводится в условиях разряжения при температуре не выше 50 °С;
  • квашение овощей и фруктов (в процессе молочнокислого брожения образуется молочная кислота, способствующая сохранению в заквашиваемых продуктах витамина C).

Примеры закрытых тестов

2.1. Общее количество минеральных солей в организме человека (в % от массы тела) :

  1. 0,45;
  2. 22,5;
  3. 2,25.

3.1. Незаменимыми аминокислотами не являются :

  1. валин;
  2. метионин;
  3. серин;
  4. фенилаланин;
  5. лизин.

3.2. Расщепление белков начинается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

3.3. В организме человека белки могут :

  1. превращаться в жиры;
  2. откладываться в запас;
  3. окисляться с высвобождением 7,6 кДж энергии на 1 г вещества;
  4. окисляться с высвобождением 40 кДж энергии на 1 г вещества.

4.1. Расщепление углеводов начинается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

4.2. Конечными продуктами диссимиляции углеводов являются :

  1. O 2 , H 2 O;
  2. CO 2 , глюкоза, H 2 O;
  3. CO 2 , H 2 S;
  4. O 2 , H 2 S;
  5. CO 2 , H 2 O.

4.3. В организме человека углеводы могут :

  1. запасаться в виде гликоген;
  2. запасаться в виде крахмала;
  3. запасаться в виде целлюлозы;
  4. окисляться с высвобождением 38,9 кДж энергии на 1 г вещества;
  5. превращаться в белки.

5.1. Расщепление жиров заканчивается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

5.2. Одним из конечных продуктов обмена жиров является :

  1. аминокислота;
  2. вода;
  3. кислород;
  4. глицерин;
  5. карбоновая кислота.

5.3. В организме человека жиры могут :

  1. откладываться в запас;
  2. запасаться в виде крахмала;
  3. окисляться с высвобождением 17,6 кДж энергии на 1 г вещества;
  4. окисляться с высвобождением 40 кДж энергии на 1 г вещества;
  5. превращаться в белки.

6.1. Бери-бери — это проявление гиповитаминоза :

  1. B 1 ;
  2. B 12 .

6.2. Фолиевая кислота — это витамин :

  1. B 1 ;
  2. B 6 ;
  3. B 12 ;
  4. B c .

Примеры открытых тестов

  • 1.1. Дайте определение понятия «обмен веществ».
  • 1.2. Дайте определение понятия «ассимиляция».
  • 1.3. Дайте определение понятия «диссимиляция».
  • 1.4. Перечислите этапы обмен веществ.
  • 2.1. Укажите суточную потребность организма человека в воде.
  • 3.1. Укажите суточную потребность организма человека в белках.
  • 4.1. Укажите суточную потребность организма человека в углеводах.
  • 5.1. Укажите суточную потребность организма человека в жирах.
  • 6.1. Недостаток витаминов в организме называется …
  • 6.2. Перечислите признаки гиповитаминоза A.
  • 6.3. Перечислите признаки гиповитаминоза D.
  • 6.4. Перечислите признаки гиповитаминозов группы В.
  • 6.5. Перечислите признаки гиповитаминоза С.
  • 6.6. Перечислите свойства витаминов.
  • 6.7. Перечислите способы сохранения витаминов в пищевых продуктах.

Ответы на закрытые тесты

2.1 — 2 3.1 — 3 3.2 — 2 3.3 — 1 4.1 — 1 4.2 — 5
4.3 — 1 5.1 — 3 5.2 — 2 5.3 — 1 6.1 — 4 6.2 — 5

Ответы на открытые тесты

  • 1.1. Обмен веществ — совокупность реакций пластического (ассимиляции) и энергетического (диссимиляции) обменов.
  • 1.2. Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых.
  • 13. Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ до неорганических веществ.
  • 1.4:
    • поступление веществ в организм;
    • изменение веществ в ходе ассимиляции и диссимиляции;
    • выведение конечных продуктов обмена.
  • 2.1. Суточная потребность организма человека в воде составляет 2-2,5 л в зависимости от условий существования.
  • 3.1. Суточная потребность организма человека в белках составляет 72-92 г.
  • 4.1. Суточная потребность организма человека в улгеводах составляет 358-484 г.
  • 5.1. Суточная потребность организма человека в жирах составляет 81-110 г.
  • 6.1. Гиповитаминоз.
  • 6.2:
    • куриная слепота (нарушение сумеречного зрения);
    • сухость роговицы глаза и ее помутнение;
    • снижение иммунитета;
    • сухость кожи.
  • 6.3:
    • искривление костей ног;
    • уплощение груди;
    • не зарастание родничков черепа.
  • 6.4:
    • поражение нервной системы;
    • задержка роста;
    • нарушение зрения;
    • малокровие;
    • дерматиты.
  • 6.5:
    • поражение стенок кровеносных сосудов;
    • кровоточивость десен;
    • снижение иммунитета;
    • быстрая утомляемость.
  • 6.6:
    • входят в состав ферментов и физиологически активных веществ;
    • быстро разрушаются при нагревании пищевых продуктов;
    • действие их проявляется в малых количествах и выражается в регуляции процессов обмена веществ.
  • 6.7:
    • консервирование;
    • замораживание;
    • вакуумная сушка;
    • квашение продуктов.

В клетке обнаружены примерно тысяча ферментов. С помощью такого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных типа реакций - синтез и расщепление.

Реакция синтеза. В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки , сложные углеводы , жиры , нуклеиновые кислоты . Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянными свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты , крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО2 и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция , биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

АТФ как единое и универсальное энергетическое вещество. Все проявления жизнедеятельности, все функции клетки осуществляются с затратой энергии. Энергия требует для движения биосинтетических реакций, переноса веществ через клеточные мембраны, для любых форм клеточной активности.

Источником энергии в живых клетках, обеспечивающим все виды их деятельности, является аденозинтрифосфорная кислота (АТФ). Освобождающаяся при расщеплении АТФ энергия обеспечивает любые виды клеточных функций - движение, биосинтез, перенос веществ через мембраны и др. Так как запас АТФ в клетке невелик, то понятно, что по мере убыли АТФ содержание ее должно восстанавливаться. В действительности так и происходит. Биологический смыл остальных реакций энергетического обмена и состоит в том, что энергия, освобождающаяся в результате химических реакций окисления углеводов и других веществ, используется для синтеза АТФ, т. е. для восполнения ее запаса в клетке. При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышцы работают почти исключительно за счет распада содержащейся в них АТФ. После окончания бега спортсмен усиленно дышит, разогревается: в этот период происходит интенсивное окисление углеводов и других веществ для восполнения убыли израсходованной АТФ. При длительной и не очень напряженной работе содержание АТФ в клетках может существенно не изменяться, так как реакции окисления успевают обеспечить быстрое и полное восстановление израсходованной АТФ.

Итак, АТФ представляет единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие и заготовка энергии впрок. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время.

Синтез АТФ осуществляется главным образом в митохондриях. Именно поэтому митохондрии называют "силовыми станциями" клетки. Образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те участки клетки, где возникает потребность в энергии.

Этапы энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на три последовательных этапа. Рассмотрим их на примере животной клетки.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на мелкие молекулы: из крахмала образуется глюкоза , из жиров - глицерин и жирные кислоты, из белков - аминокислоты, из нуклеиновых кислот - нуклеотиды . Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при этом энергии рассеивается в виде тепла.

Второй этап энергетического обмена называют бескислородным или неполным. Вещества, образовавшиеся в подготовительном этапе - глюкоза, глицерин, органические кислоты, аминокислоты и др. - вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты , обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее - на третий и т. д. Это обеспечивает быстрое и эффективное течение процесса. Разберем его на примере бескислородного расщепления глюкозы, которое имеет специальное название - гликолиза. Гликолиз представляет собой ряд последовательных ферментативных реакций. Его обслуживает 13 различных ферментов, и в ходе его образуется более десятка промежуточных веществ. Многие промежуточные реакции гликолиза идут с участием фосфорной кислоты Н3РО4. В нескольких реакциях участвует АДФ. Не останавливаясь на деталях, укажем лишь, что на начальные ступени ферментного конвейера вступают шестиуглеродная глюкоза, Н3РО4 и АДФ, а с последних сходят трехуглеродная молочная кислота, АДФ и вода . Суммарное уравнение гликолиза должно быть записано так:

С6Н12О6+2Н3РО4+2АДФ =2С3Н6О3+2АТФ+2Н2О

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока, образовании простокваши, сметаны, кефира) вызывается молочнокислыми грибами и бактериями. По механизму оно вполне тождественно гликолизу.

У растительных клеток и у некоторых дрожжевых грибов распад глюкозы осуществляется путем спиртового брожения. Спиртовое брожение, как и гликолиз, представляет длинный ряд ферментативных реакций, причем большая часть реакций гликолиза и спиртового брожения полностью совпадают, и только на самых последних этапах есть некоторые различия. В ряде промежуточных реакций спиртового брожения, как и при гликолизе, принимают участие Н3РО4 и АДФ. Конечными продуктами спиртового брожения являются двуокись углерода, этиловый спирт, АТФ и вода. Суммарное уравнение спиртового брожения следует записать так:

С6Н12О6+2Н3РО4+2АДФ = 2СО2+2С2Н5ОН+2АТФ+2Н2О

Из приведенных уравнений гликолиза и спиртового брожения видно, что в этих процессах не участвует кислород, поэтому их назвают бескислородными, или с неполным расщеплением, так как полное расщепление - это расщепление до конца, т. е. превращение глюкозы в простейшие соединения - СО2 и Н2О, что соответствует уравнению

С6Н12О6+6О2= 6СО2+6Н2О

Наконец, и это особенно важно, из уравнений следует, что при распаде одной молекулы глюкозы в ходе гликолиза и спиртового брожения образуются две молекулы АТФ. Следовательно, распад глюкозы в процессе гликолиза и спиртового брожения сопряжен с синтезом универсального энергетического вещества АТФ.

Так как синтез АТФ представляет эндотермический процесс, то, очевидно, энергия для синтеза АТФ черпается за счет энергии реакций бескислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе бескислородного расщепления грамм-молекулы глюкозы, освобождается 200 кдж (50 ккал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ и АТФ затрачивается 40 кдж (10 ккал).

В ходе бескислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2Х40=80 кдж (2Х10=20 ккал). Итак, из 200 кдж (50 ккал) только 80 (20) сберегаются в виде АТФ, а 120 (30 ккал) рассеиваются в виде тепла. Следовательно, в ходе бескислородного расщепления глюкозы 40% энергии сберегается клеткой.

Третий этап энергетического обмена - стадия кислород-ного, или полного расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2О.

Основное условие осуществления этого процесса - наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия бескислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления - СО2 и Н2О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции бескислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, много больше, чем на каждой ступени бескислрородного процесса. В сумме кислородное расщепление дает громадную величину - 2600 кдж (650 ккал). Если бы вся эта энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование реакций кислородного расщепления показало, что в этих реакциях, как и в реакциях бескислородного процесса, принимает участие Н3РО4 и АДФ и что кислородный процесс, как и бескислородный, сопряжен с синтезом АТФ. В ходе кислородного расщепления двух трехуглеродных молекул происходит образование 36 молекул АТФ - 36 богатых энергией фосфатных связей. Таким образом, суммарное уравнение кислородного процесса можно записать так:

2С3Н6О3+6О2+36Н3РО4+36АДФ =6СО2+6Н2О+36АТФ+36Н2О, а суммарное уравнение полного расщепления глюкозы так:

С6Н12О6+6О2+38Н3РО4+38АДФ =6СО2+6Н2О+38АТФ+38Н2О

Теперь должно быть ясно значение для клетки третьей, кислородной стадии энергетического обмена. Если в ходе бескислородного расщепления освобождается 200 кдж/моль (50 ккал/моль) глюкозы, то в стадии кислородного процесса освобождается 2600 кдж (650 ккал), т. е. в 13 раз больше. Если в ходе бескислородного расщепления синтезируются две молекулы АТФ, то в кислородную стадию их образуется 36, т. е. в 18 раз больше. Иными словами, в ходе расщепления глюкозы в клетке на стадии кислородного процесса освобождается и преобразуется в другие формы энергии свыше 90% энергии глюкозы.

Займемся снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2О, т. е. в ходе кислородного и бескислородного процессов, синтезируется 2+36=38 молекул АТФ. Таким образом, в потенциальную энергию АТФ переходит 38 Х 40=1520 кдж (38 Х 10=380 ккал). Всего при расщеплении глюкозы (в бескислродную и кислородную стадии) освобождается 200+2600=2800 кдж (50+650= 700 ккал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12 - 15%. В двигателях внутреннего сгорания он достигает примерно 35%. Таким образом, по эффективности преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

При сопоставлении количества энергии, освобождаемой в ходе бескислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, видно, что кислородный процесс несравненно более эффективен, чем бескислородный. Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как бескислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только бескислородный процесс. Но при этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы.

Дыхание и горение. Окисление органических веществ, происходящее в клетке, часто сравнивают с горением: в обоих случаях происходит поглощение кислорода и выделение СО2 и Н2О. Однако между этими процессами имеются глубокие различия. Дыхание представляет высокоупорядоченный, многоэтапный процесс. Благодаря участию в нем ферментов оно идет с достаточной скоростью при температуре, несравненно более низкой, чем горение. Принципиально отличается в обоих процессах способ преобразования химической энергии расщепляемых веществ. При горении вся энергия переходит в тепловую. Дальнейшее использование ее для производства работы всегда происходит с низким к. п. д. При биологическом окислении главная часть энергии переходит в химическую энергию универсального энергетического вещества - АТФ, которое в дальнейшем используется клеткой с к. п. д., недостижимым для тепловых двигателей.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Стрижки по форме лица для женщин и девушек Стрижки по форме лица для женщин и девушек Разводы в молодых семьях Разводы в молодых семьях Все, что нужно знать о тестах на беременность Все, что нужно знать о тестах на беременность