Энергия - материалы для подготовки к егэ по физике. Конспект урока "Кинетическая энергия. Теорема о кинетической энергии (практика)" Теорема о кинетическая энергия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Под элементарной работой dА, совершаемой силой на элементарном перемещении , называют величину, равную скалярному произведению на

где угол a - угол между векторами силы и перемещением (рис.1.22,а);

Модуль вектора элементарного перемещения или элементарный путь пройденной точкой приложения силы.

Работа силы на конечном перемещении равна сумме элементарных работ:

. (1.61)

Если сила постоянна ( =const), то ее работа на прямолинейном участке длины l запишется следующим образом:

. (1.62)

Работа силы может быть положительной, отрицательной или равной нулю. Так, работы постоянных сил, приложенных к телу (рис.1.22б) на горизонтальном участке пути l, равны:

Чтобы ввести понятие о кинетической энергии W k тела, запишем элементарную работу dA силы в другом виде (см. 1.2.2):

Тогда для работы силы , переводящей тело из состояния 1 (скорость тела ) в состояние 2 (скорость тела ) можно записать:

Из полученной формулы следует, что работа силы равна разности двух величин, определяющих начальное (скорость ) и конечное (скорость ) состояния тела. При этом условия перехода из состояния 1 в состояние 2 не оказывают влияние на записанное выражение. Поэтому можно ввести функцию состояния тела, его кинетическую энергию W к как СФВ, характеризующую способность тела совершать работу за счет изменения скорости его движения и равную

В этом выражении постоянную величину выбирают, предположив, что при нулевой скорости движения тела его кинетическая энергия равна нулю, поэтому

Кинетическая энергия тел не зависит от того, как была достигнута данная скорость u, она является функцией состояния тела, положительной величиной, зависящей от выбора системы отсчета.

Введение W к позволяет сформулировать теорему о кинетической энергии, согласно которой алгебраическая сумма работ всех сил, действующих на тело, равна приращению кинетической энергии тела:

Эта теорема широко используется для анализа взаимодействия тел не только в механике, но и в других разделах курса физики, таких как электростатика, постоянный ток, электромагнетизм, колебания и волны и т.д.

1.4.2. Кинетическая энергия вращающегося а.т.т.

Возьмем а.т.т., вращающееся вокруг неподвижной оси с угловой скоростью (рис.1.16,б). Представим тело в виде совокупности м.т. массы dm , тогда для кинетической энергии тела можно записать:

Итак, кинетическая энергия а.т.т. вращающегося относительно неподвижной оси вращения, определяется по формуле



Если тело одновременно участвует в поступательном (плоском) и вращательном движениях (например, движение цилиндра без скольжения по плоскости, рис.1.23,а), то его кинетическую энергию можно получить

Рис.1.23

как сумму кинетической энергии поступательного движения тела вместе с осью вращения, проходящей через его центр масс (точка О ), со скоростью и вращательного движения тела относительно этой оси с угловой скоростью

. (1.67)

Для сплошного (I 1 =1/2mR 2 ) и тонкостенного (I 2 =mR 2 ) цилиндров одинаковой массы m и радиуса R кинетические энергии запишутся таким образом:

.

Полученные формулы для кинетической энергии цилиндров позволяют объяснить опыт по различию времени их скатывания с наклонной плоскости высотой h и длиной l (рис.1.23,б). Так, согласно закону сохранения энергии (силой трения при движении цилиндров практически можно пренебречь) получим

,

где обозначают скорости сплошного и полого цилиндров у основания наклонной плоскости.

При скатывании цилиндров центр их масс движется равноускоренно без начальной скорости и поэтому согласно формуле (1.13) можно записать:

,

т.е. на скатывание полого цилиндра требуется большее время, чем для сплошного цилиндра.

Качественно это можно объяснить тем, что полый цилиндр является более инертным, чем сплошной (для него момент инерции относительно оси вращения больше), и поэтому он медленнее изменяет свою скорость и поэтому тратит больше времени на скатывание с наклонной плоскости.

Как видно из рис.1.23,а, модули скоростей точек на поверхности цилиндра будут разными (u В =0, , u А =2u) в связи с тем, что эти точки участвуют одновременно и в поступательном и в вращательном движениях со скоростями и , причем для каждой точки направлена по касательной к поверхности цилиндра и равна по модулю u ( ).

Отметим, что движение цилиндра можно рассматривать и как ряд последовательных вращений вокруг мгновенной оси, проходящей через точку С (рис.1.23,а) с угловой скоростью w. Причем и в этом случае кинетическая энергия тела также определяется формулой (1.67).

Теорема о кинетической энергии формулируется так. Сумма работы всех сил (консервативных и неконсервативных), приложенных к телу, равна приращению его кинетической энергии. С помощью этой теоремы можно обобщить закон сохранения механической энергии на случай незамкнутой (неизолированной) системы : приращению полной механической энергии системы равно работе сторонних сил над системой.

Траектория

Траекторией называется воображаемая линия, описываемая телом при движении. В зависимости от формы траектории движения бывают криволинейные и прямолинейные. Примеры криволинейного движения: движение тела, брошенного под углом к горизонту (траектория – парабола), движение материальной точки по окружности.

Трение

Возникает между двумя телами в плоскости соприкосновения их поверхностей и сопровождается диссипацией (рассеиванием) энергии. Механическая энергия системы, в которой есть трение, может только уменьшаться. Наука, изучающая трение, называется трибологией. Опытным путем установлено, что максимальная сила трения покоя и сила трения скольжения не зависит от площади соприкосновения тел и пропорциональна силе нормального давления, прижимающей поверхности друг к другу. Коэффициент пропорциональности при этом называется коэффициентом трения (покоя или скольжения).

Третий закон Ньютона

Третий закон Ньютона - физический закон, в соответствии с которым силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти точки. Как и прочие законы Ньютона, третий закон справедлив только для инерциальных систем отсчета . Краткая формулировка третьего закона: действие равно противодействию.

Третья космическая скорость

Третья космическая скорость - минимальная скорость , необходимая для того, чтобы космический аппарат, запущенный с Земли, преодолел притяжение Солнца и покинул Солнечную систему. Если бы Земля в момент запуска была неподвижна и не притягивала тело к себе, то третья космическая скорость была бы равна 42 км/с. С учетом скорости орбитального движения Земли (30 км/с) третья космическая скорость равна 42-30 = 12 км/с (при запуске в направлении орбитального движения) или 42+30 = 72 км/с (при запуске в противоположном направлении). Если учесть еще и силу притяжения к Земле, то для третьей космической скорости получим значения от 17 до 73 км/с.



Ускорение

Ускорение - векторная величина, характеризующая быстроту изменения скорости . При произвольном движении ускорение определяется как отношение приращения скорости к соответствующему промежутку времени. Если устремить этот промежуток времени к нулю, получим мгновенное ускорение. Значит, ускорение есть производная от скорости по времени. Если рассматривается конечный промежуток времени Δt, то ускорение называется средним. При криволинейном движении полное ускорение складывается из тангенциального (касательного) и нормального ускорения .

Угловая скорость

Угловая скорость - векторная величина, характеризующая вращательное движение твердого тела и направленная по оси вращения согласно правилу правого винта. Средняя угловая скорость численно равна отношению угла поворота к соответствующему промежутку времени. Взяв производную от угла поворота по времени, получим мгновенную угловую скорость. Единицей угловой скорости в СИ является рад/с.

Ускорение свободного падения

Ускорение свободно падающего тела - ускорение, с которым движется тело под действием силы тяготения. Ускорение свободного падения одинаково для всех тел, независимо от их массы . На Земле ускорение свободно падающего тела зависит от высоты над уровнем моря и от географической широты и направления к центру Земли. На широте 45 0 и на уровне моря ускорение свободно падающего тела g = 9.80665 м/с 2 . В учебных задачах обычно полагают g = 9,81 м/с 2 .

Физический закон

Физический закон - необходимая, существенная и устойчиво повторяющаяся связь между явлениями, процессами и состояниями тел. Познание физических законов составляет основную задачу физической науки.

50. Физический маятник

Физический маятник - абсолютно твердое тело , имеющее ось вращения. В поле тяготения физический маятник может совершать колебания около положения равновесия, при этом массу системы нельзя считать сосредоточенной в одной точке. Период колебаний физического маятника зависит от момента инерции тела и от расстояния от оси вращения до центра масс .

Энергия (от греч. energeia – деятельность)

Энергия - скалярная физическая величина, являющаяся общей мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие. Основные виды энергии: механическая, внутренняя, электромагнитная, химическая, гравитационная, ядерная. Одни виды энергии могут превращаться в другие в строго определенных количествах (см. также Закон сохранения и превращения энергии ).

Термодинамика и молекулярная физика

Кинетическая энергия материальной точки выражается половиной произведения массы этой точки на квадрат ее скорости.

Теорему о кинетической энергии материальной точки можно выразить в трех видах:

т. е. дифференциал кинетической энергии материальной точки равен элементарной работе силы, действующей на эту точку;

т. е. производная по времени от кинетической энергии материальной точки равна мощности силы, действующей на эту точку:

т. е. изменение кинетической энергии материальной точки на конечном пути равно работе силы, действующей на точку на том же пути.

Таблица 17. Классификация задач

Если на точку действует несколько сил, то в правые частя уравнений входит работа или мощность равнодействующей этих сил, которая равна сумме работ или мощностей всех составляющих сил.

В случае прямолинейного движения точки, направляя ось по прямой, по которой движется точка, имеем:

где , так как в этом случае равнодействующая всех приложенных к точке сил направлена по оси х.

Применяя теорему о кинетической энергии в случае несвободного движения материальной точки, нужно иметь в виду следующее: если на точку наложена совершенная стационарная связь (точка движется по абсолютно гладкой неподвижной поверхности или линии), то реакция связи в уравнения не входит, ибо эта реакция направлена по нормали к траектории точки и, следовательно, ее работа равна нулю. Если же приходится учитывать трение, то в уравнение кинетической энергии войдет работа или мощность силы трения.

Задачи, относящиеся к этому параграфу, можно разделить на два основных типа.

I. Задачи на применение теоремы о кинетической энергии при прямолинейном движении точки.

II. Задачи на применение теоремы о кинетической энергии при криволинейном движении точки.

Кроме того, задачи, относящиеся к типу I, можно разделить на три группы:

1) сила, действующая на точку (или равнодействующая нескольких сил), постоянна, т. е. , где X - проекция силы (или равнодействующей) на ось , направленную по прямолинейной траектории точки;

2) сила, действующая на точку (или равнодействующая), является функцией расстояния (абсциссы этой точки), т. е.

3) сила, действующая на точку (или равнодействующая), есть функция скорости этой точки, т. е.

Задачи, относящиеся к типу II, можно разделить на три группы:

1) сила, действующая на точку (или равнодействующая), постоянна и по модулю и по направлению (например, сила веса);

2) сила, действующая на точку (или равнодействующая), есть функция положения этой точки (функция координат точки);

3) движение точки при наличии сил сопротивления.

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

A =Ek 2−Ek 1=m υ 22−0=m υ 22 .

42) Потенциальные поля

Потенциальное поле

консервативное поле, векторное поле, циркуляция которого вдоль любой замкнутой траектории равна нулю. Если П. п. - силовое поле, то это означает равенство нулю работы сил поля вдоль замкнутой траектории. Для П. п. а (М ) существует такая однозначная функция u (М )(Потенциал поля), что а = gradu (см. Градиент). Если П. п. задано в односвязной области Ω, то потенциал этого поля может быть найден по формуле

в которой AM - любая гладкая кривая, соединяющая фиксированную точку А из Ω с точкой М, t - единичный вектор касательной кривой AM и / - длина дуги AM, отсчитываемая от точки А. Если а (М ) - П. п., то rot a = 0 (см. Вихрь векторного поля). Обратно, если rot а = 0 и поле задано в односвязной области и дифференцируемо, то а (М ) - П. п. Потенциальными являются, например, электростатическое поле, поле тяготения, поле скоростей при безвихревом движении.

43) Потенциальная энергия

Потенциальная энергия - скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжианесистемы, и описывающая взаимодействие элементов системы. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в СИ является Джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называетсянормировкой потенциальной энергии .

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где E p - потенциальная энергия тела, m - масса тела, g - ускорение свободного падения, h - высота положения центра масс тела над произвольно выбранным нулевым уровнем.

44) Связь силы и потенциальной энергии

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Последнее выражение дает среднее значение на отрезке . Чтобы

получить значение в точке нужно произвести предельный переход:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

45) Закон сохранения механической энергии

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Ранее развитие дома: занятия с шестимесячным ребенком Ранее развитие дома: занятия с шестимесячным ребенком Стрижки по форме лица для женщин и девушек Стрижки по форме лица для женщин и девушек Разводы в молодых семьях Разводы в молодых семьях