Гиалуроновая кислота для кожи и суставов: свойства, назначение, противопоказания. Гиалуроновая кислота распространение в природе Какой должна быть гиалуроновая кислота

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Гиалуроновая кислота (ГК), также известная как (соль кислоты) или гиалуронан (объединяющее обозначение для кислоты и ее соли), представляет собой анионный натуральный полисахарид (несульфированный простейший гликозаминогликан), который является важным компонентом нервной, эпителиальной, соединительной тканей и основным ингредиентом внеклеточного матрикса.

Гиалуроновая кислота также входит в состав многих, присущих живым организмам биологических жидкостей (синовиальная жидкость, слюна и пр.). Данное вещество может продуцироваться некоторыми бактериями (например, стрептококками ) и выделяться из органов животных (гребень петуха, стекловидное тело и хрящевая ткань рогатого скота).

В человеческом теле массой около 70-ти килограмм в среднем содержится примерно 15 граммов этой эндогенной кислоты, третья часть которой ежесуточно подвергается преобразованию (расщепляется или синтезируется).

Структура и строение

Структурная схема ГК характерна для линейного полисахарида, состоящего из чередующихся остаточных частей N-aцетил-D-гликозамина и D-глюкуроновой кислоты , последовательно соединенных гликозидными связями β-1,3 и β-1,4.

Одна молекула данной кислоты может включать до 25 тысяч подобных дисахаридных звеньев. ГК природного происхождения обладает молекулярной массой варьирующей в пределах 5000-20000000 Да. У человека среднее значение молекулярной массы находящегося в синовиальной жидкости полимера равняется 3140000 Да.

Молекула кислоты энергетически стабильна, в том числе вследствие стереохимии дисахаридов входящих в ее состав. В пиранозном кольце объемные заместители расположены в стерически выгодных позициях, тогда как меньшие по объему атомы водорода размещены в менее выигрышных аксиальных положениях.

Образование: Окончил Винницкий национальный медицинский университет им. Н.И.Пирогова, фармацевтический факультет, высшее фармацевтическое образование – специальность «Провизор».

Опыт работы: Работа в аптечных сетях «Конекс» и «Биос-Медиа» по специальности «Фармацевт». Работа по специальности «Провизор» в аптечной сети «Авиценна» города Винница.

Комментарии

Я тоже кстати гиалуронку в таблетка принимаю. Кстати, у Эвалара хорошая, да, но там эффект накопительный, надо 2 месяца пить и не забывать

Было много проблем с кожей:шелушилась, трескалась, стали появляться морщины. Из-за этого решила попробовать гиалуроновую кислоту в таблетках, да так и осталась ее пить. Уже 6 курсов прошла, с кожей стало гораздо лучше, даже холода теперь не страшны.

Спасибо за хорошую статью. Сама принимаю гиалуронку уже давно. Пробовала и крем, и инъекции, но остановилась на таблетках. Думаю, что это все-таки самое практичное, что создали.

Гиалуронан представляет собой гликозаминогликан, который образует во внеклеточном матриксе огромные комплексы с протеогликанами. Особенно в большом количестве эти комплексы присутствуют в хрящевой ткани, где гиалуронан посредством линкерного белка связывается с протеогликаном агреканом

Гиалуронан несет сильный отрицательный заряд и поэтому во внеклеточном пространстве связывается с катионами и с молекулами воды. Это приводит к увеличению жесткости внеклеточного матрикса и создает между клетками водяную подушку, которая гасит силы сжатия

Гиалуронан состоит из повторяющихся единиц дисахаридов, связанных в длинные цепи

В отличие от других гликозаминогликанов, гиалуронановые цепи синтезируются на цитозольной поверхности плазматической мембраны и затем выходят из клетки

Клетки связываются с гиалуронанами с участием семейства рецепторов, известных под названием гиаладгерины, которые инициируют сигнальные процессы, контролирующие миграцию клеток и сборку цитоскелета

Гиалуронан (ГК), также известный под названием гиалуроновая кислота или гиалуронат, представляет собой глюкозаминогликан (ГАГ). В отличие от других гликозаминогликанов (ГАГ), связанных с внеклеточном матриксом, гиалуронан не связан ковалентной связью с протеогликанами сердцевинных белков, а образует очень большие комплексы с секретируемыми протеогликанами.

К числу таких наиболее важных комплексов относятся комплексы, присутствующие в хрящевой ткани, где молекулы ГК , секретируемые хондроцитами (хрящеобразующие клетки), связываются примерно со 100 копиями протеоглика-на агрекана. Агрекановые сердцевинные белки через небольшой линкерный белок связываются с одной молекулой ГК через 40-нм интервалы. Такие комплексы в длину могут достигать более 4 мм и обладать мол массой, превышающей 2 х 108 дальтон. Таким образом, с участием ГК во внеклеточном матриксе хрящевой ткани создаются большие гидратированные пространства.

Эти пространства играют особенно важную роль в тканях с низкой плотностью кровеносных сосудов, поскольку они обеспечивают диффузию питательных компонентов и выведение продуктов обмена из внеклеточного пространства.

Гиалуроновая кислота (ГК) обладают очень простой структурой. Подобно всем ГАГ, они являются линейными полимерами одного из дисахаридов, глюкуроновой кислоты, связанной с N-ацетилглюкозамином посредством (3 (1-3) связи. Как показано на рисунке ниже, молекулы ГК содержат в среднем 10 000 (и до 50 000 этих дисахаридов, связанных b(1-4) связью. Поскольку дисахариды несут отрицательный заряд, они связывают катионы и молекулы воды.

Подобно протеогликанам , ГК увеличивают жесткость внеклеточного матрикса и служат в качестве смазки в таких соединительнотканных структурах, как . Гидратированные молекулы ГК также образуют между клетками водяную подушку, которая позволяет тканям гасить силы сжатия.

CD44 образует гомодимеры или гетеродимеры с рецепторами Erb2.
Эти комплексы связываются с рядом сигнальных молекул,
которые контролируют организацию цитоскелета и экспрессию генов.

Молекулы гиалуроновой кислоты (ГК) гораздо крупнее, чем другие ГАГ. Из-за этого клетки должны расходовать на их формирование большие количества энергии. Подсчитано, что для формирования одной среднего размера цепи ГК, необходимо 50 000 эквивалентов АТФ, 20 000 кофакторов НАД и 10 000 групп ацетил-КоА. Поэтому в большинстве клеток синтез ГК находится под жестким контролем.

Синтез гиалуроновой кислоты (ГК) катализируется трансмембранными ферментами, ГК синтазами, локализованными в плазматической мембране. Эти ферменты несколько необычны в том смысле, что они собирают полимер ГК на цитозольной стороне плазматической мембраны, а затем переносят его через мембрану во внеклеточное пространство. Это принципиально отличается от синтеза других ГАГ, которые образуются в аппарате Гольджи и ковалентно связываются с протеогликанами сердцевинных белков по мере их прохождения по секреторному пути.

Важнейшим способом регуляции синтеза гиалуроновой кислоты (ГК) является изменение экспрессии ферментов, ГК синтаз. Экспрессия этих ферментов индуцируется специфичными для клеток факторами роста. Например, фактор роста фибробластов и интерлейкин-1 являются индукторами экспрессии ферментов в фибробластах, в то время как глюкокортикоиды подавляют экспрессию в этих же клетках. Эпидермальный фактор роста стимулирует экспрессию в кератиноцитах, но не в фибробластах. Секреция ГК контролируется независимо от их синтеза, и это обеспечивает, по крайней мере, два способа контроля уровня ГК в тканях.

Наряду с участием в гидратации тканей, гиалуроновая кислота (ГК) связывается со специфическими поверхностными рецепторами, что приводит к стимуляции внутриклеточных сигнальных путей, контролирующих такие процессы, как миграция клеток. Основным рецептором ГК является CD44, относящийся к семейству белков, называемых гиладгеринами, которые связываются с ГК. К остальным представителям этого семейства относятся протеогликаны (например, версикан, агрекан, бревикан) и линкерный белок, который связывает ГК с агреканом в хрящевой ткани. Множественные формы CD44 образуются при альтернативном сплайсинге транскриптов одного гена, хотя функциональные различия между этими изоформами остаются неясными.

CD44 существует в виде гомодимеров, которые экспрессируются во многих типах клеток или в виде гетеродимеров с ErbВ, тирозинкиназой, которая экспрессируется на эпителиальных клетках.

Цитоплазматический участок CD44 обладает несколькими функциями. Он необходим для правильного связывания с ГК и для сортинга рецепторов на клеточной поверхности. Он также участвует в процессах внутриклеточной передачи сигнала. Картирование функциональных областей в цитоплазматическом участке CD44 проводилось при изучении экспрессии мутантных форм CD44 в культуре клеток, и активации сигнальных путей после прикрепления клеток к ГК.

Из этих исследований мы знаем, что гомодимеры CD44 и гетеродимеры CD44/ErbB активируют нерецепторные тирозинкиназы, например Src, а также представителей семейства небольших G-белков, Ras. Эти киназы активируют такие сигнальные белки, как протеинкиназа С, МАР киназа и ядерные факторы транскрипции.

Наряду с этим, как показано на рисунке ниже, сигналы, передающиеся с участием CD44 , могут изменять сборку актинового цитоскелета у поверхности клеток. Это происходит при активации таких белков, связывающих актин, как фодрин и небольшого G-белка, Rac-1. Одним из последствий реорганизации актина является стимуляция миграции клеток под влиянием связывания CD44 с ГК. В опухолях усиление экспрессии CD44 и секреции ГК коррелирует с увеличением ее агрессивности, и является плохим прогностическим признаком.

Обычно считается, что гиалуроновая кислота (ГК ) играет двоякую роль в стимуляции миграции клеток. Во-первых, за счет связывания с внеклеточным матриксом ГК нарушает межклеточные взаимодействия и взаимодействие клеток с матриксом. Мыши, у которых не происходит экспрессии ГК, характеризуются незначительной величиной межклеточного пространства, вследствие чего животные не могут развиваться нормально. Поскольку ГК обладает большим гидратированным объемом, повышенная секреция ГК в опухоли нарушает целостность внеклеточного матрикса, что приводит к образованию больших промежутков, через которые могут мигрировать опухолевые клетки.

Во-вторых, при связывании ГК с рецепторами CD44 могут активироваться внутриклеточные процессы передачи сигналов, непосредственно приводящие к перегруппировкам цитоскелета и к активации миграции клеток. Это подтверждается данными, полученными в экспериментах по добавлению ГК к клеткам в культуре. Клетки, экспрессирующие CD44, начинают мигрировать сразу же после контакта с ГК, и соединения, разрушающие внутриклеточные сигнальные молекулы и связывающиеся с CD44, ингибируют эту миграцию.

В данном историческом обзоре, посвященном гиалуроновой кислоте , мы постарались привлечь внимание посетителя вебсайта к наиболее важным открытиям и исследованиям, на которых строились все последующие работы в области изучения этого уникального полисахарида. Выбор данных и источников для обзора является полностью субъективным.

ВВЕДЕНИЕ

В настоящий момент никаких принципиально новых данных о гиалуроновой кислоте не существует, поэтому мы решил сделать темой этой небольшой статьи «Гиалуроновая кислота - история». При существующем в настоящее время темпе движения научной мысли далеко не каждый человек имеет достаточно времени для того, чтобы оглянуться назад и просмотреть данные литературы, в которой описаны ключевые открытия в области гиалуроновой кислоты , поэтому мы постарались кратко изложить существующие результаты. Выбор источников и данных основан только на наших знаниях и мнении, поэтому может расходиться с взглядами других людей.

КАК ВСЕ НАЧИНАЛОСЬ

Венгерский ученый Bandi Balazs эмигрировал из Венгрии в 1947 году. Приехав в Швецию, он начала работать в Стокгольме над проблемой биологической роли внеклеточных полисахаридов, причем особенно много внимания он уделял именно гиалуронату .

В те годы культуральная работа с клетками выглядела совсем по-другому. До появления антибиотиков все манипуляции выполнялись в строго стерильных условиях близких к условиям в операционной. Клетки растили на подвешенных сгустках фибрина. Фибробласты выделялись из измельченных куриных сердец, кусочки которых клались на фибриновые сгустки, а скорость роста культуры определялась по изменению площади колонии, которая указывала на скорость и расстояние миграции клеток.

Одним из первых открытий было выделение из ткани пуповины гиалуроната для того, чтобы затем вводить его в культуру фибробластов.

Гиалуронат выделялся из пуповинной крови и преципитировался в спирту. Затем его очищали от белков путем встряхивания экстракта в смеси хлороформа и изоамилового спирта (по методу Sewag). Была предпринята попытка разработать метод стерилизации вязкого раствора гиалуроната. Его нельзя было подвергать фильтрации, поэтому в конечном итоге ученые пришли к использованию автоклавирования.

В самом начале работы было сделано три очень важных наблюдения, которые заложили основу для дальнейших исследований.

Во-первых, удалось выделить гиалуронат из ткани пуповины, причем при разных ионных условиях был получен материал с различной степенью вязкости. Самая высокая вязкость была у раствора, приготовленного на дистиллированной воде. Ученые предположили, что вязкость раствора гиалуроната может колебаться в зависимости от значения рН и ионной силы растворителя. Сейчас это уже знает каждый, однако на тот момент этот феномен был описан Raymond Fuoss только для растворов синтетических полиэлектролитов. В журнале «Journal of Polymer Chemistry» была опубликована статья "The viscosity function of hyaluronic acid as a polyelectrolyte" (Показатель взякости гиалуроновой кислоты как полиэлектролита). С этого момент ученые вплотную занялись исследованиями физических и химических свойств гиалуроната.

Во-вторых, при попытке простерилизовать гиалуронат с помощью УФ-излучения он полностью утратил вязкость в растворе. В дальнейшем было показано, что при воздействии потока электронов гиалуронат также полностью подвергается деградации. Сейчас уже можно сказать, что то наблюдение было одним из первых описаний свободнорадикального расщепления гиалуроната.

В-третьих, исследовались и биологические эффекты гиалуроната и ряда сульфатированных полисахаридов - гепарина, гепарансульфата (который в те годы назывался «гепарин-односерной кислотой») и синтетически сульфатированного гиалуроната. Ученые сравнили их влияние на рост культуры клеток, антикоагулянтную активность и антигиалуронидазную активность. Главной задачей было выяснить действительно ли гепарин представляет собой сульфатированный гиалуронат, как это утверждалось в работах Asboe-Hansen, однако был сделан вывод, что это утверждение было ошибочно.

Гиалуронат, в отличие от сульфатированных полисахаридов, ускорял рост клеток и это, пожалуй, было одно из первых описаний взаимодействия гиалуроната с живыми клетками - сегодня мы знаем, что это взаимодействие опосредовано клеточным рецептором. Интересно, что это было также одно из первых исследований, посвященных изучению биологической активности гепарансульфата.

Все вышесказанные исследования были выполнены в короткий промежуток времени, начиная с сентября 1949 по декабрь 1950, то есть заняли лишь немногим больше 1 года.

ОТКРЫТИЕ ГИАЛУРОНАТА И ГИАЛУРОНИДАЗЫ

Karl Meyer открыл гиалуронат в 1934 году во время работы в глазной клинике в Университете штата Колумбия. Он выделил это соединение из стекловидного тела глаза коровы в кислых условиях и назвал его гиалуроновой кислотой от греческого hyalos - стекловидный и уроновой кислоты, которая входила в состав этого полимера. Сразу следует сказать, что до этого были выделены и другие полисахариды (хондроитинсульфат и гепарин). Более того, еще в 1918 году Levene and Lopez-Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-ионов. Тогда его назвали мукоитин-серной кислотой, однако в настоящее время он боле известен как гиаулуронат, который в их работе был выделен с небольшой примесью сульфата.

В течение следующих десяти лет Karl Meyer и еще целый ряд авторов выделили гиалуронат из различных тканей. Так, например, он был обнаружен в суставной жидкости, пуповине и ткани петушиного гребня. Самым интересным было то, что в 1937 году Kendall удалось выделить гиалуронат из капсул стрептококков. В дальнейшем практически из всех тканей организма позвоночных был выделен гиалуронат.

Еще до открытия гиалуроната Duran-Reynals обнаружил в семенниках некий биологически активный фактор. В дальнейшем его стали называть «распространяющийся фактор». Похожим действием обладали яд пчел и медицинских пиявок. При его введении подкожно в смеси с тушью отмечалось очень быстрое распространение черного окрашивания. Этим фактором оказался фермент, разрушающий гиалуронаты , который в дальнейшем назвали гиалуронидазой . Даже в крови млекопитающих присутствует определенное количество гиалуронидаз, но их активация происходит только при кислотных значениях рН.

ВЫДЕЛЕНИЕ ГИАЛУРОНАТА

Самый первый метод выделения гиалуроната был стандартным протоколом для выделения полисахаридов, то есть по методу Sewag или с помощью протеаз из экстракта удалялся весь белок. Затем полимер преципитировался на фракции добавлением этилового спирта.

Большим шагом вперед стало разделение разнозаряженных полисахаридов, которое разработал John Scott при исследовании методов преципитации с катионным детергентом (ЦПХ, цетилпиридинхлоридом), в котором изменялась концентрация солей. Гиалуронат с высокой эффективностью отделялся от сульфатированных полисахаридов. Этим методом также можно было пользоваться и для фракционирования по молекулярной массе. По своей сути, схожие результаты могут быть получены при использовании метода ионно-обменной хроматографии.

СТРУКТУРА И КОНФОРМАЦИЯ ГИАЛУРОНАТА

Химическая структура полисахаридной молекулы была расшифрована Karl Meyer и его коллегами в 1950-е. Сейчас все знают, что гиалуронат является длинной полимерной молекулой, состоящей из дисахаридных звеньев, компонентами которых являются N-ацетил-D-глюкозамин и D-глюкуроновая кислота, связанные между собой В1-4 и В1-3 связями. Karl Meyer не пользовался стандартным методом для исследования структуры интактного полисахарида. Вместо этого он проводил гиалуронидазное расщепление полисахарида, получив смесь дисахаридов и олигосахаридов, которую ему удалось полностью охарактеризовать. На основании полученных им результатов он и сделал свой вывод о возможной структуре исходной полимерной молекулы.

Конформационный анализ «волокон», состоящих из гиалуроната был впервые предпринят с использованием метода рентгеновской кирсталлографии. На конференции в г. Турку в 1972 году шли горячие споры между группами специалистов о том, имеет ли гиалуронат спиральную структуру или нет. Очевидно, что гиалуронат может формировать спирали различной структуры в зависимости от ионного состава растворителя и доли воды в нем. В 70-е и 80-е годы в литературе появлялись самые различные версии структуры гиалуроната.

Прорывом в этой области стала работа John Scott. Опираясь на то, что гиалуронат обладает малой реакционной способностью при пероксидазном окислении в водном растворе, он сделал вывод о том, что в воде он принимает конформацию с внутрицепочечными водородными связями. В дальнейшем его гипотеза нашла свое подтверждение при ЯМР-анализе, а в 1927 году Atkins с соавторами охарактеризовали конформацию как двойную спиральную.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Пятьдесят лет назад не была известна химическая структура гиалуроната и его макромолеуклярные свойства - масса, гомогенность, форма молекулы, степень гидратированности и взаимодействия с прочими молекулами. В последние 20 лет это стало объектом внимания A. G. Ogston и его сотрудников в Оксфорде, доктора Balazs с коллегами в Бостоне, Torvard С Laurent, работающего в Стокгольме, и еще нескольких лабораторий.

Основной проблемой являлось выделение гиалуроната, очищенного от белков и прочих компонентов, которое необходимо проводить перед любыми физическими методами исследования. Всегда имеется риск деградации полимерной структуры в процессе очистки. Ogston использовал технику ультрафильтрации, предположив, что свободные белки преодолеют фильтр, а белки, связанные с гиалуронатом , будут задержаны фильтром. Объектом исследования стал комплекс с содержанием белка равным 30%. Другие авторы пытались использовать разнообразные методы физической, химической и ферментативной очистки, которые позволяли снижать содержание белка до нескольких процентов. В то же время результаты физико-химического анализа дали более полное описание молекулы гиалуроната . Ее молекулярный вес близок к нескольким миллионам, хотя разброс между образцами был достаточно высок. Рассеивание света показало, что молекула ведет себя как случайным образом скрученная, достаточно плотно упакованная цепь с радиусом изгиба порядка 200 нм. Упакованность и малоподвижность цепи связана с наличием внутрицепочечных водородных связей, о которых уже говорилось выше. Случайно скрученная структура полностью соответствует полученному соотношению вязкости и молекулярной массы вещества. Ogston и Stanier использовали методы седиментации, диффузии, разделения в зависимости от градиента скорости сдвига и вязкости а также метод двойного преломления, которые показали, что молекула гиалуроната имеет форму высоко гидратированной сферы, что вполне отвечает известным свойствам молекул с упаковкой в виде случайно скрученной спирали.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Единственно возможным путем количественного исследования гиалуроновой кислоты было выделение полисахарида в чистом виде и измерение содержания в нем уроновой кислоты и/или N-ацетилглюкозамина. Методами выбора в данном случае являлись карбазольный методы Дише для оценки содержания уроновой кислоты и реакция Эльсона-Моргана на уровень гексозамина.

В данном случае трудно переоценить важность использования карбазольного метода. При анализе гиалуроната иногда приходилось использовать миллиграммы вещества.

Следующим шагом стало открытие специфичных ферментов. Гиалуронидаза грибов Streptomyces действовала только на гиалуронат , при этом образовывались ненасыщенные гекса- и тетрасахариды. При анализе содержания гиалуроната можно было использовать это свойство грибов, особенно при наличии в среде других полисахаридов и примесей, а ненасыщенная форма гиалуроновой кислоты может использоваться для снижения лимита обнаружения продукта. Ферментативный метод значительно повысил чувствительность обнаружения гиалуроната, доведя ее до уровня микрограммов.

Последним этапом стало использование аффинных белков, специфично связывающихся с гиалуронатом. Tengblad использовал гиалуронат-связывающие белки из хрящей, а Delpech в дальнейшем использовал гиалуронектин, выделенный из головного мозга. Эти белки могут использоваться при анализе по аналогии с иммунологическими методами, а после разработки этого метода точность количественного определения гиалуроната возросла до уровня нанограммов, что позволило определять содержание гиалуроната в образцах тканей и физиологических жидкостях. Метод Tengblad стал основой для большей части работ Uppsala, выполненных позже.

ВИЗУАЛИЗАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в срезах тканей тесно связано с анализом полимеров в тканевой жидкости. С самого начала использовались методы неспецифического окрашивания со стандартными красителями. John Scott удалось повысить специфичность по такому же принципу, которым он руководствовался при разработке метода фракционирования анионных полисахаридов в детергентах. Он окрашивал их красителем алциановый синий в разных ионных концентрациях, при этом ему удалось добиться различимого окрашивания разных полисахаридов. В дальнейшем он перешел на использование купромеронового синего.

В то же время гиалуронат можно хорошо выявлять на срезах ткани с помощью специфично связывающихся с ним белков. Первые сообщения о таком методе были опубликованы в 1985. Этот метод использовался с большим успехом и, благодаря ему, были получены ценные данные о распределении содержания гиалуроната в разных органах и тканях.

Гиалуронат также может быть обнаружен при электронной микроскопии. На первых изображениях, которые были опубликованы Jerome Gross к сожалению, не удалось увидеть каких-либо тонких деталей структуры. Первой хорошо объяснявшей результаты работой можно считать статью Fessler и Fessler. В ней было указано, что гиалуронат имеет протяженную одноцепочечную структуру.

Затем Robert Fraser описал еще один изящный метод визуализации околоклеточно расположенного гиалуроната . Он добавлял суспензию частиц гиалуроната к культуре фибробластов. Частицы не были обнаружены в толстом слое, окружающем культуру фибробластов. Таким образом было показано, что в околоклеточном пространстве имеется гиалуронат, подвергающийся расщеплению под действием гиалуронидазы.

ЭЛАСТИЧНОСТЬ И РЕОЛОГИЯ

Исходя из размеров одной из самых крупных молекул гиалуроната , несложно предположить, что при концентрации порядка 1 г/л они практически полностью насыщают раствор. При высоких концентрациях молекулы перепутываются, а раствор представляет собой некую сеть из цепей гиалуроната. Точка полимеризации определяется достаточно легко - это момент насыщения раствора, после которого его вязкость резко увеличивается по мере увеличения концентрации. Еще одним свойством раствора, которое зависит от его концентрации является скорость сдвига вязкости. Это явление описали Ogston и Stanier. Эластические свойства раствора изменяются по мере нарастания концентрации и молекулярной массы полимеров. Текучесть чистого гиалуроната была впервые определена Jensen и Koefoed, и более подробный анализ вязкости и эластичности раствора был выполнен Gibbs et al.

Является ли такое интересное поведение раствора следствием сугубо механического переплетения цепочек полимеров или оно связано и с их химическим взаимодействием? В ранних работах, опубликованных Ogston, обсуждались возможные взаимодействия, опосредованные через белки. Welsh с соавторами получил указания на существование взаимодействий цепочек между собой. Это было достигнуто путем добавления коротких цепочек гиалуроната (60 дисахаридов) к раствору, что вызывало уменьшение его эластичности и вязкости. Очевидно, что при этом происходило конкурентное взаимодействие коротких и длинных цепей. В более поздних работах John Scott было показано, что конформация гиалуроната с наличием гидрофобных связей между цепочками хорошо соответствовала склонности гиалуроната к формированию спиралей с находящимися рядом молекулами, которые стабилизировались гидрофобными связями. Таким образом, наиболее вероятным является межцепочечное взаимодействие, которое во многом и определяет реологические свойства гиалуроната .

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ГИАЛУРОНОВЫХ ПОЛИМЕРОВ

Открытие переплетение цепочек гиалуроната при нарастании концентрации, которое может происходить в тканях, стало основой для предположения, что гиалуронат может быть задействован во многих физиологических процессах за счет создания большой трехмерной сети цепочек. Обсуждались самые разнообразные свойства таких сетей.

Вязкость. Очень высокая вязкость концентрированных растворов гиалуроната, а также зависимость сдвига от вязкости, могут быть использованы для суставной смазки. Гиалуронат всегда присутствует во всех пространствах, разделяющих подвижные элементы организма - в суставах и между мышц.

Осмотическое давление. Осмотическое давление растворов гиалуроната в значительной мере зависит от их концентрации. При высоких концентрациях коллоидно-осмотическое давление такого раствора оказывается выше, чем у растворов альбуминов. Это свойство может быть использовано в тканях для поддержания гомеостаза.

Сопротивление потоку . Плотная сеть цепочек является достаточно хорошим препятствием току жидкости. Гиалуронат действительно может формировать препятствия для тока жидкости в тканях, что впервые было показано Day.

Исключенный объем. Трехмерная сеть цепочек вытесняет из раствора все остальные макромолекулы. Доступный объем может быть измерен в опыте диализного уравнивания раствора гиалуроната и буферного раствора, при этом оказалось, что полученный эффект совпал с расчетным по данным теоретических исследований, проведенных Ogston. Эффект исключения обсуждался в связи с разделением белка, содержащегося в сосудистом русле и внеклеточном пространстве, однако он также рассматривался и в качестве механизма накопления физиологических и патологических молекул в соединительной ткани. Исключение полимеров снижает растворимость многих белков.

Диффузионный барьер. Движение макромолекул через раствор гиалуроната может быть измерено при седиментационном и диффузионном анализе. Чем больше молекула тем ниже будет скорость ее движения. Этот эффект связали с формированием в тканях диффузионных барьеров. Например, околоклеточный слой гиалуроната может защищать клетки от воздействия макромолекул, выделяемых другими клетками.

ГИАЛУРОН-СВЯЗЫВАЮЩИЕ БЕЛКИ (ГИАЛАДГЕРИНЫ)

Протеогликаны. До 1972 года считалось, что гиалуронат является инертным соединением и не взаимодействует с другими макромолекулами. В 1972 Hardingham и Muir показали, что гиалуронат может связываться с протеогликанами хрящевой ткани. Исследования Hascall и Heinegard показали, что гиалуронат может специфично связываться с N-концевым доменом глобулярной части протеогликанов и соединительных белков. Данная связь является достаточно прочной и на одну цепь гиалуроната могут садиться несколько протеогликанов, в результате чего в хряще и иных тканях формируются крупные агрегации молекул.

Рецепторы гиалуроната. В 1972 Pessac и Defendi и Wasteson с соавторами показали, что суспензии некоторых клеток начинают агрегировать при добавлении гиалуроната. Это было первым сообщением, указывавшим на специфичное связывание гиалуроната с поверхностью клеток. В 1979 Underhill и Toole показали, что гиалуронат действительно связывается клетками, а в 1985 году был выделен отвечающий за это взаимодействие рецептор. В 1989 году сразу 2 группы авторов опубликовали работы, в которых было показано, что рецептор хоуминга лимфоцитов CD44 обладает способностью связываться с гиалуронатом в хрящевой ткани. Вскоре было показано, что рецептор, выделенный Underhill и Toole был полностью идентичен CD44. Еще одним гиалуронат -связывающим белком, выделенным позднее из супернатанта культуры клеток 3T3 в 1982 году Turley с соавторами оказался РГРП (рецептор гиалуроната, опосредующий подвижность). После этих работ был открыт еще целый ряд гиаладгеринов.

РОЛЬ ГИАЛУРОНАТА В КЛЕТКЕ

Вплоть до открытия гиаладгеринов считалось, что гиалуронат оказывает влияние на клетки только за счет физических взаимодействий. Данные о том, что гиалуронат может играть роль в биологических процессах были единичными и, в большинстве своем, были построены на отсутствии или наличии гиалуроната при разных биологических процессах. Многие из спекуляций того времени были построены на методах неспецифического гистологического окрашивания.

В начале 1970-х в Бостоне было выполнено очень интересное исследование. Bryan Toole и Jerome Gross показали, что во время регенерации конечности у головастиков гиалуронат синтезируется в самом начале, а затем его количество уменьшается под действием гиалуронидазы, при этом происходит замещение гиалуроната хондроитинсульфатом. Таким же образом развиваются события и при формировании роговицы у цыпленка. Toole указал, что накопление гиалуроната совпадает с периодами миграции клеток в ткани. Как уже было сказано выше, Toole также провел первые исследования мембранно-связанных гиаладгеринов, а с открытием рецепторов гиалуроната у нас есть все больше оснований полагать, что гиалуронат играет роль регуляции клеточной активности, например, при движении клеток. В последние 10 лет можно наблюдать всплеск числа публикаций, посвященных роли гиалуроната в миграции клеток, митозе, воспалении, опухолевом росте, ангиогенезе, оплодотворении и т.д.

БИОСИНТЕЗ ГИАЛУРОНАТА

Исследования биосинтеза гиалуроната можно условно разделить на 3 фазы. Первым автором и наиболее выдающимся ученым в первую фазу был Albert Dorfman. Он и его коллеги еще в начале 50-х описали источник моносахаридов, которые встраивались в гиалуроновые цепочки стрептококков. В 1955 году Glaser и Brown впервые показали возможность синтеза гиалуроната отдельной синтетической системой вне клетки. Они использовали фермент, выделенный из клеток куриной саркомы Rous и вводили в состав гиалуроновых олигосахаридов меченую изотопом 14С УТФ-глюкуроновую кислоту. Группа Dorfman также выделила молекулы-предшественники УТФ-глюкуроновой кислоты и УТФ-N-ацетилглюкозамина из экстракта стрептококков, а также синтезировала гиалуронат , пользуясь для этого ферментативной фракцией, выделенной из стрептококков.

Во второй фазе стало понятно, что гиалуронат должен синтезироваться по пути, отличному от гликозаминогликанов. Синтез гиалуроната, в отличие от сульфатированных полисахаридов, не требует активного синтеза белка. Ответственная за это синтаза расположена в мембране протопласта бактерий и плазматической мембране эукариотических клеток, но не в аппарате Гольджи. Синтетический аппарат, предположительно расположен на внутренней стороне мембраны, так как он оказался нечувствительным к воздействию внеклеточных протеаз. Кроме того, гиалуроновая цепочка пронизывает мембрану, так как воздействие на клетки гиалуронидазы усиливало продукцию гиалуроната . В 80-ые годы были предприняты несколько безуспешных попыток выделить синтазу из эукариотических клеток.

В начале 90-ых было показано, что гиалуронат -синтаза является фактором вирулентности стрептококков группы А. Взяв эти данные за основу, две группы авторов смогли определить ген и локус, отвечающий за синтез гиалуроновой капсулы. Вскоре удалось и клонировать ген этой синтазы и полностью его просеквенировать. Гомологичные белки, выделенные в последние годы у всех позвоночных, дали ценную информацию о ее строении. Важной областью исследования может стать изучение механизмов регуляции активности этой синтазы.

МЕТАБОЛИЗМ И ДЕГРАДАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в крови, а также его переноса от тканей по лимфатической системе стало основой для проведения совместного исследования, проводившегося доктором Robert Fraser в Мельбурне и лабораторией в г. Уппсала. Следовые количества полисахарида, меченого тритием по ацетильной группе были обнаружены в крови после введения его кроликам и людям, а метка соединения исчезала с периодом полувыведения равным нескольким минутам. Вскоре стало понятно, что большая часть радиации была накоплена печенью, где полимер быстро подвергался расщеплению. Меченая тритием вода обнаруживалась в крови через 20 минут. Авторадиограммы показали, что накопление радиации происходило также в селезенке, лимфоузлах и костном мозге. Методом фракционирования клеток было также показано, что в печени накопление происходило в основном в эндотелии синусов, что было позднее подтверждено при исследовании in vitro и при радиографии in situ. На этих клетках имеется рецептор для эндоцитоза гиалуроната, который принципиально отличается от прочих гиалуронат-связывающих белков. Далее полисахарид расщепляется в лизосомах. Исследования гиалуроната проводились и в других тканях, и теперь существует цельная картина метаболизма этого полисахарида.

В последнее время еще один аспект катаболизма гиалуроната стал объектом большого числа исследований. Из работ Gunther Kreil (Австрия) и Robert Stern и его коллег (Сан-Франциско) стали известны структуры и свойства различных гиалуронидаз. Эти данные стали основой для исследований, прояснивших биологическую роль этих ферментов.

ГИАЛУРОНАТ ПРИ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЯХ

С самого начала интерес ученых был прикован к свойствам гиалуроната, содержащегося в суставной жидкости, особенно к изменению его уровня при заболеваниях суставов. Было также показано, что гиперпродукция гиалуроната наблюдается при целом ряде заболеваний, например, при злокачественных опухолях - мезотелиомах, однако в то время еще не существовало достаточно точных и чувствительных методов обнаружения гиалуроната. Такая ситуация имела место вплоть до 1980 годов, когда были разработаны новые аналитические методики, что вновь привлекло интерес ученых к колебаниям содержания гиалуроната при разных заболеваниях. Были определены содержание гиалуроната в крови в норме и при патологии, особенно при циррозе печени. При ревматоидном артрите содержание гиалуроната в крови возрастало при физических нагрузках, особенно по утрам, что давало объяснение симптому «утренней скованности» в суставах. При различных воспалительных заболеваниях уровень гиалуроната в крови повышался как местно, так и системно. Органные дисфункции также могли быть объяснены накоплением гиалуроната, что вызывало интерстициальные отеки тканей.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Основной прорыв в медицинском использовании гиалуроната целиком является заслугой д-ра Balazs. Он разработал основные положения и идеи, первым синтезировал форму гиалуроната, которую хорошо переносили больные, продвигал идею промышленного производства гиалуроната и популяризовал идею применения полисахаридов в качестве лекарственных средств.

В 50-ые годы Balazs сконцентрировал усилия на изучении состава стекловидного тела и начал проводить опыты с заменителями для возможного протезирования при лечении отслойки сетчатки. Одним из наиболее серьезных препятствий на пути применения гиалуроновых протезов стала высокая сложность выделения чистого гиалуроната, свободного от всех примесей, вызывающих воспалительную реакцию.

Balazs разрешил эту проблему и получившийся в итоге препарат получил название НВФ-NaГУ (невоспалительная фракция гиалуроната натрия). В 1970 гиалуронат был впервые введен в суставы беговым лошадям, страдавшим от артритов, причем был получен клинический выраженный ответ на лечение с уменьшением симптомов заболевания. Двумя годами позже Balazs смог убедить руководство компании Pharmacia AB в г. Уппсала начать производство гиалуроната для использования в клинической и ветеринарной практике. Miller и Stegman по совету д-ра Balazs начали использовать гиалуронат в составе имплантируемых внутриглазных линз и гиалуронат быстро стал одним из самых употребительных компонентов в хирургической офтальмологии, получив торговое название Healon®. С того момента были предложены и испытаны многие другие варианты использования гиалуроната. Его производные (например, поперечно структурированные гиалуронаты ) также были испытаны для использования в клинике. Особенно хочется отметить, что еще в 1951 году Balazs уже сообщал о биологической активности самых первых из полученных тогда производных гиалуроната.

ЗАКЛЮЧЕНИЕ

В данном докладе нам удалось охватить лишь основные и наиболее значимые события в истории исследования гиалуроната, и еще многие другие интересные факты и данные будут обсуждаться на нашем веб-сайте. Из представленных статей будет ясно, что исследования гиалуроната становятся все более актуальными и необходимыми. Сегодня ежегодно в научной литературе публикуется от 300 до 400 статей, посвященных гиалуронату .

Первая международная конференция, целиком посвященная гиалуронату, проводилась в г. Сен-Тропез в 1985 году, после чего были проведены конгрессы в Лондоне (1988), Стокгольме (1996) и Падуе (1999).

Рост интереса связан, во многом, с успешными работами Endre Balazs, который сделал очень много в области исследования свойств гиалуроната, получил самые первые данные о нем, указал на возможность клинического применения гиалуроната и является вдохновителем, подвигающим научное сообщество на новые исследования.

1.История открытия

2.Физико-химические свойства ГК

3.Биологическая роль ГК

4.Синтез и метаболизм ГК в организме человека

5.Получение и модификация ГК

6. Активные биологические функции ГК в организме человека

7.Применение ГК в косметологии и пластической хирургии

8. Инъекционные методики введения гиалуроновой кислоты и их осложнения

1.История открытия

Гиалуроновая кислота (гиалуронат, гиалуронан) (ГК) — несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (стекловидном теле, синовиальной жидкости и др.). Название «гиалуроновая кислота» этому веществу было дано в 1934 году К. Мейером. Химическая структура гиалуроновой кислоты (была установлена в 1950-х годах К. Мейером и Дж. Палмером, которые впервые идентифицировали его из стекловидного тела глаза. .

2.Физико-химические свойства ГК

Гиалуроновая кислота представляет собой полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединенных поочередно β-1,4- и β-1,3-гликозидными связями. Молекула ГК может содержать до 25 00 таких дисахаридных звеньев. Природная ГК имеет молекулярную массу от 5 до 20 000 кДа, также продуцируется некоторыми бактериями (напр. Streptococcus) [Марри Р. и др., 2009], однако не существует в свободном состоянии, только в виде солей Na, Ca и др., поэтому говоря о ГК, всегда подразумевается какая-либо ее соль.

3.Биологическая роль ГК

Даже 1%-ый раствор ГК обладает заметной вязкостью, поскольку ее молекулы образуют в воде нечто наподобие сетки. Недаром гиалуроновую кислоту иногда называют молекулярной губкой [Сеньоре Жан-Марк, 1998]. Благодаря своим физико-химическим свойствам (высокая вязкость, специфическая способность связывать воду и белки и образовывать протеогликановые агрегаты) ГК способствует проявлению многочисленных функций соединительной ткани и являясь одним из основных компонентов внеклеточного матрикса, стекловидного тела глаза и синовиальной жидкости. [Строителев В., Федорищев И., 2000].

Исследования ГК показали, что уникальность этого вещества заключается также и в том, что молекулы ГК с различной длиной полисахаридной цепи оказывают разные эффекты на клеточное поведение:

Короткие цепи ГК (с мол. массой менее 30000) оказывают противоспалительное действие;

Среднемолекулярная ГК (с мол. массой более 500000) подавляет ангиогенез, ингибирует клеточную миграцию и пролиферацию, а также продукцию интерлейкина-1b и простагландина Е2, вследствие чего она нашла широкое применение в офтальмологии и лечении посттравматических и дегенеративных артритов;

Высокомолекулярная фракция ГК с мол. массой 50000-100000 обладает способностью стимулировать клеточную миграцию и пролиферацию в кожных покровах, а также обладает большой водоудерживающей способностью. Одна молекула высокомолекулярной фракции ГК связывает до 500 молекул воды. Поэтому дерма, содержащая значительное количество ГК, оптимально насыщена водой, что обеспечивает коже упругость и устойчивость к внешним воздействиям.

4.Синтез и метаболизм ГК в организме человека

В отличие от других гликозаминогликанов, синтезируемых в аппарате Гольджи, ГК синтезируется на внутренней поверхности плазматической мембраны. По мере удлинения полимерной цепи ГК выводится через мембрану на ее наружную поверхность. Вне клетки ГК может образовывать комплексы с гиалуронат-связывающими белками, называемыми гиалатгеринами.

Все гиаладгерины содержат в своем составе гиалуронат-связывающий мотив или протеогликановый тандемный повтор (PTR) в виде одной (CD44 и TSG-6) или двух (верникан, связующий белок, аггрекан, нейрокан, бревикан) копий. Различные ткани содержат различные наборы гиаладгеринов, что обусловлено особенностями структуры и функциями конкретной соединительной ткани. Так, в хряще обнаружены аггрекан и связующий белок, тогда как в более мягкой соединительной ткани дермы – верзикан.

Синтез гиалуроната осуществляется ферментом гиалуронатсинтазой. У человека имеется три гиалуронатсинтазы HAS1, HAS2 и HAS3. Они кодируются различными генами, которые локализованы на разных хромосомах и произошли от общего предка. Каждый из синтезируемых HAS-белков (гиалуронатсинтаз) может играть специфическую роль в биосинтезе гиалуроната:

HAS1-белок осуществляет медленный синтез высокомолекулярного гиалуроната;

HAS2-белок значительно более активен, чем HAS1 и также синтезирует высокомолекулярный гиалуронат (до 2 х 106 Da);

HAS3-белок наиболее активен из трех HAS-белков, но синтезирует более короткие цепи гиалуроната ((2-3) х 105 Da).

Молекулы гиалуроната разной длины по-разному влияют на поведение клеток. Возможно, это играет важную роль в механизмах физиологической регуляции.

ГК деградируется под воздействием группы тканевых ферментов, называемых гиалуронидазами. Продукты разложения ГК (олигосахариды и крайне низкомолекулярные гиалуронаты) проявляют проангиогенные свойства (стимулируют образование новых капилляров из уже существующих сосудов. Кроме того, недавние исследования показали, что фрагменты ГК, в отличие от нативного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках при повреждениях тканей и отторжении трансплантированной кожи. В теле человека весом 70 кг в среднем содержится около 15 грамм ГК, треть из которой преобразуется (расщепляется или синтезируется) каждый день .

5.Получение и модификация ГК

Для практических целей в медицине и косметологии, ГК выделяется из различных биологических тканей – стекловидное тело животных, синовиальная жидкость, пупочные канатики, оболочек различных штаммов микроорганизмов и т.д. Основным и наиболее перспективным источником получения ГК являются гребни птиц.

Не мене важная задачей является очистка экстрактов ГК от чужеродных белковых фракций и нуклеиновых кислот и последующее придание препарату нужных свойств при помощи его модификации, обеспечивающей ее реологические и вязкоупругие свойства, а также увеличения сопротивления деградации под действием ферментов организма и внешних факторов. Подобное изменение свойств ГК расширяет сферы применения в качестве компонента различных препаратов и лекарственных субстанций.

Один из способов модификации обеспечивается фотополимеризацией или фотоперекрестным сшиванием молекул гиалуроновой кислоты под воздействием квантового/лазерного излучения определенных длин волн от 514 до 790 нм.

6. Биологические функции ГК в организме человека

Регенерирующая: Усиление миграции и секретирующей способностифибробластов

Противовоспалительная: Улучшение микроциркуляции крови

Противомикробная: Активация бактерицидных факторов на поверхности кожи и раневых поверхностях

Противотоксическая: Снижение показателей эндогенной интоксикации

Иммуномодулирующая: Усиление фагоцитоза, изменение активности лимфоцитов

Антиоксидантная: Акцептированиеактивных форм кислорода, блокируя свободнорадикальное окисление липидов

Гемостатическая: Активация компонентов гемостаза с образованием тромба

Благодаря своим уникальным свойствам, ГК, в качестве монотерапии или в комбинированной синергии с квантофорезом и другими физиотерапевтическим факторами (электрофорез, ионофорез, магнитотерапия и др.) находит широкое применение в лечебных и реабилитационных программах различных областей медицинской практики и косметологии: ортопедии, травматологии, спортивной медицине, хирургии, гинекологии, неврологии, урологии, дерматологии, эстетической медициныи т.д.

7. Применение ГК в косметологии и пластической хирургии

В коже наличие гиалуроновой кислоты впервые показано К.Мейером в 1948 году. К настоящему времени установлено, что кожа (как эпидермис, так и дерма) относятся к числу тканей с наибольшим содержанием гиалуроната, который во многом определяет не только структуру, но и защитные и регенерационные свойства кожного покрова.

Гиалуроновая кислота — натуральный увлажнитель и каркас кожи.

В дерме ГК образует каркас, к которому присоединяются другие гликозаминогликаны (и прежде всего хондроитинсульфат) и белки, называемые за их свойство избирательно связываться с ГК гиалатгеринами, с образованием полимерной сети, которая заполняет большую часть внеклеточного пространства, обеспечивая механическую поддержку тканей, быструю диффузию водорастворимых молекул и миграцию клеток. С другой стороны, в эпидермисе ГК локализуется в околоклеточном пространстве, создавая оболочку клетки, защищающей ее от действия токсичных веществ.

Следует заметить, что только фракция ГК с молекулярной массой 50000-100000 обладает способностью стимулировать клеточную миграцию и пролиферацию в кожных покровах, а также обладает наиболее возможным уровнем водоудерживающей способности. Одна молекула высокомолекулярной фракции ГК связывает до 500 молекул воды. Поэтому кожные покровы, содержащие значительное количество ГК, максимально насыщены водой, что обеспечивает коже упругость и устойчивость к внешнему воздействию.

Одним из главных признаков старения кожи является снижение содержания ГК и тесно связанное с этим сокращение запаса влаги в коже. Наибольшее количество гиалуроновой кислоты содержится в соединительной ткани новорожденных детей. До 30-35 лет количество ГК в дерме остается достаточно стабильным, после – начинает довольно быстро снижаться, о чем сигнализируют появляющиеся в это время признаки биологического старения – потеря влажности, ухудшение эластичности и тонуса кожи, появление морщин.

Кроме того, с возрастом снижается собственный синтез гиалуроновой кислоты в дерме и эпидермисе и ускоряется ее разрушение под действием различных внешних и внутренних факторов [Сеньоре Жан-Марк, 1998].

Благодаря своим уникальным свойствам, ГК находит широкое применение в различных областях медицинской практики и косметологии.

Огромной популярностью в настоящее время пользуются процедуры, направленные на омоложение кожи лица, рук и других открытых частей тела и устранение видимых признаков старения путем внутрикожного введения ГК, которое называется гиалуроновой биоревитализацией (гиалуропластикой), то есть восстановление количества ГК в коже свойственного молодому возрасту.

8. Инъекционные методики введения гиалуроновой кислоты и их осложнения.

Традиционной формами подобного восполнения является способ инъекционного введения гиалуроновой кислоты в кожу, имеющей ряд недостатков и осложнений, которые зависят от многих внешних и внутренних факторов, в том числе связанных с ошибками персонала, индивидуальными особенностями и повышенной чувствительностью кожи к аллергенной природе препарата попадающего в кровь, а также наличием сопутствующих заболеваний и противопоказаний.

К наиболее распространенным осложнениям инъекционного введения ГК относятся:

— возникающие опухание, выраженные гранулематозные реакции, различной степени отеки и эритема в местах инъекции вследствие реакций локальной гиперчувствительности по типу ангионевротического отека, которые могут сохраняться в течение длительного времени и иметь отрицательные эстетические последствия;

— после инъекционного введения ГК довольно часто возникает рецидив герпетических высыпаний, в результате стимуляции латентного вируса герпеса, особенно в области губ;

— использование инфицированного или плохо очищенного препарата провоцируют развитие инфекционных процессов кожи или реакции на чужеродные тела;

— изменения пигментации кожи в области инъекции;

— кожные воспалительные заболевания в зонах, подлежащих обработке, делают невозможной инъекционную биоревитализацию – последствия могут быть весьма негативными и провоцировать диффузию воспалительного процесса;

— наличие ряда сопутствующих заболеваний;

— инъекционная биоревитализация при беременности и при кормлении грудью также недопустима;

— осложнения после инъекционной биоревитализации неизбежны, если есть аллергия на компоненты препарата или аутоиммунные заболевания;

— прием антикоагулянтов (препаратов разжижающих кровь, например ацетилсалициловой кислоты в аспирине) также могут стать причиной негативных последствий инъекционной биоревитализации;

— при повышенной склонности к образованию келоидных рубцов не рекомендуется инъекционная биоревитализация, так как последствия могут быть непредсказуемыми;

— манипулируя иглой, косметолог не в состоянии полностью контролировать подкожную область введения препарата и избежать введение препарата в кровеносный сосуд, особенно в зоне глаз. С другой стороны, слишком поверхностное введение препарата способно вызвать появление неровностей поверхности кожи, в то же время, чрезмерно глубокое может оказаться нерезультативным;

— болезненность процедуры;

— экономический фактор и относительная дороговизна процедуры.

Всех этих негативных проявлений методики инъекционного введения гиалуроновой кислоты удается избежать при применении альтернативной технологии лазерофореза (квантофореза) КВАНТОЛА.

Данная методика по своей эффективности в косметологии не уступает и даже превосходит существующий до сих пор и наиболее распространенный способ инъекционного введения гиалуроновой кислоты в кожу, имеющей ряд недостатков и осложнений, зависящих от многих факторов, в том числе связанных с ошибками персонала, местными факторами кожи, гиперчувствительностью кожи, наличием хронических заболеваний.

При этом способе биоревитализации достигается гораздо более объемное и равномерное распределение гиалуроновой кислоты в коже по сравнению с инъекционными методиками.

По сути, технология КВАНТОЛА представляет собой сочетанную методику фотодинамического омоложения (биоревитализации) кожи и привлекает внимание специалистов благодаря безопасности, эффективности, безболезненности, отсутствию нежелательных побочных эффектов и доступности для широкого применения.

В более широком аспекте, помимо целей омоложения кожи, этот метод может с успехом использоваться для лечения ряда кожных заболеваний, например фотоповреждений кожи, гиперплазии сальных желез, угрей и множества других состояний, с которыми сталкиваются дерматологи и косметологи и др. (узнайте подробнее…)

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Стрижки по форме лица для женщин и девушек Стрижки по форме лица для женщин и девушек Разводы в молодых семьях Разводы в молодых семьях Все, что нужно знать о тестах на беременность Все, что нужно знать о тестах на беременность