Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля. Энергия электрического поля. Электрическая энергия системы зарядов. Энергия уединенного проводника. Энергия конденсатора. Плотность энергии Энергия системы заря

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Энергия заряженного проводника определяется как работа по переносу заряда из на его поверхность. Если сразу переносить весь заряд из на поверхность проводника, то работа, совершаемая против силы электрического поля будет равна нулю, поскольку заряды переносятся в отсутствии электрического поля.

Поэтому энергию заряженного проводника следует определять как работу по переносу заряда из на его поверхность отдельными малыми порциями.

Энергия заряженного конденсатора. Энергию заряженного конденсатора можно найти так же через работу по переносу заряда на его пластины отдельными малыми порциями. Основное отличие от предыдущего случая состоит в том, что в данном случае заряды переносятся не из , а с одной пластины на другую, что требует во много раз меньших затрат энергии.Поскольку работа по зарядке проводника или конденсатора связана с потенциалом, то потребуются гораздо меньшие затраты энергии для сообщения одинакового заряда пластинам конденсатора и проводнику. Отсюда следует, что взаимная емкость пластин конденсатора много больше суммарной емкости каждой из пластин в отдельности.

ЭНЕРГИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. ПЛОТНОСТЬ ЭНЕРГИИ

Будем считать, что энергия заряженного конденсатора – это энергия электростатического поля, заключенного между его пластинами. Для определения энергия электростатического поля возьмем плоский конденсатор, поскольку поле между его пластинами является однородным. Выразим энергию заряженного конденсатора через основную характеристику электрического поля - напряженность поля

Работа по поляризации диэлектрика. Возьмем диэлектрик в виде куба, который состоит из неполярных молекул. Под действием поля напряженностью Е происходит смещение + и – зарядов в каждой молекуле на dr k .

Возникающий при этом электрический момент молекулы p k = q k ∙dr k .

Работа по поляризации одной молекулы: dA k =F k ∙ dr k = q k ∙E∙ dr k ,

но q k ∙dr k =dp k -это изменение электрического момента одной молекулы.

Откуда dA k =Е∙ dр k

Элементарная работа по всему объему диэлектрика:

dA V = Ʃ E∙dp i = E Ʃ dp i = E d Ʃp i = E∙ dP

Работа по поляризации диэлектрика

Энергия электрического поля, плотность энергии

Первое слагаемое – это энергия электрического поля

в вакууме, а второе – работа по поляризации диэлектрика

ЭЛЕКТРИЧЕСКИЙ ТОК

Лекция №14

Электрическим током называется направленное движение зарядов. За направление тока принимается направление движения + зарядов. Свойство тел пропускать электрический ток называется проводимостью . По этому признаку все тела можно условно разделить на проводники и изоляторы .

Линия тока – это линия, вдоль которой движутся заряды, участвующие в электрическом токе.

Трубка тока – трубка, боковые стенки которой образованы линиями тока.

Сила тока I – физическая величина, характеризующая скорость потока заряженных частиц, равная количеству электричества Δq, проходящему через поперечное сечение проводника за время Δt, отнесенному к этому интервалу времени: I= Dq/Dt

Плотность тока – векторная величина, связывающая силу тока с поперечным сечением проводника. Плотность тока равна количеству электричества Δq, проходящему через поперечное сечение проводника Δ S за время Δt, отнесенное к этой площадке и этому интервалу времени.

1. Энергия системы неподвижных точечных заря-до в. Электростатические силы взаимодействия консервативны, следователь­но, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , находящихся на расстоянии г друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом Q 2 в точке на­хождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2

и

Поэтому W 1 =W 2 =W и W=Q 1 =Q 2 =1/2(Q 1 + Q 2 ). Добавляя к системе из двух зарядов последовательно заряды Q 3 , Q 4 ..., можно убедиться в
том, что в случае n неподвижных зарядов энергия взаимодействия системы то­чечных зарядив равна

Потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i-го.

2 Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный про­водник, затратив на это работу равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

, (1.17.2)

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник.

(1.17.3)

Формулу (1.17.2) можно получить и из того, что потенциал проводника во всех его точках одинаков, гак как поверхность проводника является эквипотен­циальной. Полагая потенциал проводника равным , из (1.17.1) найдем

где Q = , - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (1.17.3) равна

, (1.17.4)

где Q - заряд конденсатора, С - его емкость, ()- разность потенциалов моыц обкладками.

4. Энергия электростатического поля. Преобразуем формулу (1.17.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора () и разности потенциалов между его обкладками . Тогда получим

(1.17.5)

где V = Sd - объем конденсатора. Формула (1.17.5) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(1.17.6)

Выражение (1.46) справедливо только для изотропного д и э л с к i р и к а, для которого выполняется соотношение:

Формулы (1.17.4) и (1.17.5) соответственно связывают энергию конденсату,> с зарядом на его обкладках и напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем- заряды или поле? Ответ на этот вопрос может дать только опыт. Электроста­тика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их за­
рядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию. Это убедительно подтверждает основное положе­ние теории близкодействия о локализации энергии в поле и то, что поле является ее носителем.

Энергия системы зарядов, уединенного проводника, конденсатора.

1. Энергия системы неподвижных точечных зарядов . Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда): где φ 12 и φ 21 - соответственно потенциалы, которые создаются зарядом Q 2 в точке нахождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно, и поэтому W 1 = W 2 = W и Добавляя к нашей системе из двух зарядов последовательно заряды Q 3 , Q 4 , ... , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (1) где φ i - потенциал, который создается в точке, где находится заряд Q i , всеми зарядами, кроме i-го. 2. Энергия заряженного уединенного проводника . Рассмотрим уединенный проводник, заряд, потенциал и емкость которого соответственно равны Q, φ и С. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, при этом затратив на это работу, которая равна ");?>" alt="элементарная работа сил электрического поля заряженного проводника"> Чтобы зарядить тело от нулевого потенциала до φ, нужно совершить работу (2) Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник: (3) Формулу (3) можно также получить и условия, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Если φ - потенциал проводника, то из (1) найдем где Q=∑Q i - заряд проводника. 3. Энергия заряженного конденсатора . Конденсатор состоит из заряженных проводников поэтому обладает энергией, которая из формулы (3) равна (4) где Q - заряд конденсатора, С - его емкость, Δφ - разность потенциалов между обкладками конденсатора. Используя выражение (4), будем искать механическую (пондеромоторную) силу , с которой пластины конденсатора притягиваются друг к другу. Для этого сделаем предположение, что расстояние х между пластинами изменилось на величину dx. Тогда действующая сила совершает работу dA=Fdx вследствие уменьшения потенциальной энергии системы Fdx = - dW, откуда (5) Подставив в (4) выражение для емкости плоского конденсатора, получим (6) Продифференцировав при фиксированном значении энергии (см. (5) и (6)), получим искомую силу: где знак минус указывает, что сила F является силой притяжения. 4. Энергия электростатического поля . Используем выражение (4), которое выражает энергию плоского конденсатора посредством зарядов и потенциалов, и спользуя выражением для емкости плоского конденсатора (C=ε 0 εS/d) и разности потенциалов между его обкладками (Δφ=Ed. Тогда (7) где V= Sd - объем конденсатора. Формула (7) говорит о том, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е. Объемная плотность энергии электростатического поля (энергия единицы объема) (8) Выражение (8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение: Р = æε 0 Е . Формулы (4) и (7) соответственно выражают энергию конденсатора через заряд на его обкладках и через напряженность поля. Возникает вопрос о локализации электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика занимается изучением постоянных во времени поля неподвижных зарядов, т. е. в ней поля и попродившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на данный вопрос не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать отдельно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, которые способны переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле .

Заряд q , находящийся на некотором проводнике, можно рассматривать как систему точечных зарядов q. Ранее мы получили (3.7.1) выражение для энергии взаимодействия системы точечных зарядов:

Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды q i , одинаковы и равны потенциалу j проводника. Воспользовавшись формулой (3.7.10) получим для энергии заряженного проводника выражение:

. (3.7.11)

Любое, из ниже приведенных формул (3.7.12) дает энергию заряженного проводника:

. (3.7.12)

Итак, логично поставить вопрос: где же локализована энергия, что является носителем энергии- заряды или поле? В пределах электростатики, которая изучает постоянные по времени поля неподвижных зарядов, дать ответ невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля, могут существовать независимо от возбудивших их зарядов и распространяться в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Эти факты заставляют признать, что носителем энергии является поле.

Литература:

Осн. 2 , 7 , 8 .

Доп. 22 .

Контрольные вопросы:

1. При каких условиях силы взаимодействия двух заряженных тел можно найти по закону Кулона?

2. Чему равен поток напряженности электростатического поля в вакууме через замкнутую поверхность?

3. Расчет каких электростатических полей удобно производить на основе теоремы Остроградского-Гаусса?

4. Что можно сказать о напряженности и потенциале электростатического поля внутри и у поверхности проводника?

11. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.

1. Энергия заряженного проводника и конденсатора.

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид:

2. Плотность энергии электростатического поля.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем:

С учетом, что и :

Или .

12. Носители тока в средах. Сила и плотность тока. Уравнение непрерывности. Электрическое поле в проводнике с током. Силовые линии электрического поля и линии тока.

Электрический ток - упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках - электроны , в электролитах - ионы (катионы и анионы ), в газах - ионы и электроны , в вакууме при определенных условиях -электроны , в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Сила тока - скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока - основная единица в СИ 1 А - есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n - концентрация частиц. Их общий заряд


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j - это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Уравнение непрерывности.

Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S . Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V , охваченного поверхностью S . Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I , идущему вовне из области, ограниченный замкнутой поверхностью S . Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q , охватываемый поверхностью S , изменяется за время на , тогда в интегральной форме можно записать.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Что нужно делать, чтобы убрать пигментные пятна вокруг глаз? Что нужно делать, чтобы убрать пигментные пятна вокруг глаз? Кармические причины возникновения проблем, или Как изменить свою жизнь Кармические причины возникновения проблем, или Как изменить свою жизнь Как избежать трещин во время кормления грудью? Как избежать трещин во время кормления грудью?