Контрольные вопросы. При каких условиях нитяной маятник можно считать математическим? При каких условиях колебания нитяного маятника можно

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

1.При каких условиях материальная точка движется равномерно и прямолинейно? 2.Справедлив ли закон Ньютона для произвольного тела или только для

материальной точки?

3.Какие условия необходимы, чтобы тело двигалось с постоянным ускорением?

1. Первый закон Ньютона?

2. Какие системы отсчета являются инерциальными и неинерциальными? Приведите примеры.
3. В чем состоит свойство тел, называемое инертностью? Какой величиной характеризуется инертность?
4. Какова связь между массами тел и модулями ускорений, которые они получают при взаимодействии?
5. Что такое сила и чем она характеризуется?
6. Формулировка 2 закона Ньютона? Какова его математическая запись?
7. Как формулируется 2 закон Ньютона в импульсной форме? Его математическая запись?
8. Что такое 1 Ньютон?
9. Как движется тело, если к нему приложена сила постоянная по модулю и направлению? Как направлено ускорение, вызванное действующей на него силой?
10. Как определяется равнодействующая сил?
11. Как формулируется и записывается 3 закон Ньютона?
12. Как направлены ускорения, взаимодействующих между собой тел?
13. Приведите примеры проявления 3 закона Ньютона.
14. Каковы границы применимости всех законов Ньютона?
15. Почему мы можем считать Землю инерциальной системой отсчета, если она двигается с центростремительным ускорением?
16. Что такое деформация, какие виды деформации вы знаете?
17. Какая сила называется силой упругости? Какова природа этой силы?
18. Каковы особенности силы упругости?
19. Как направлена сила упругости (сила реакции опоры, сила натяжения нити?)
20. Как формулируется и записывается закон Гука? Каковы его границы применимости? Постройте график, иллюстрирующий закон Гука.
21. Как формулируется и записывается закон Всемирного тяготения, когда он применим?
22. Опишите опыты, по определению значения гравитационной постоянной?
23. Чему равна гравитационная постоянная, каков ее физический смысл?
24. Зависит ли работа силы тяготения от формы траектории? Чему равна работа силы тяжести по замкнутому контуру?
25. Зависит ли работа силы упругости от формы траектории?
26. Что вы знаете о силе тяжести?
27. Как вычисляется ускорение свободного падения на Земле и других планетах?
28. Что такое первая космическая скорость? Как ее вычисляют?
29. Что называют свободным падением? Зависит ли ускорение свободного падения от массы тела?
30. Опишите опыт Галилео Галилея, доказывающий, что все тела в вакууме падают с одинаковым ускорением.
31. Какая сила называется силой трения? Виды сил трения?
32. Как вычисляют силу трения скольжения и качения?
33. Когда возникает сила трения покоя? Чему она равна?
34. Зависит ли сила трения скольжения от площади соприкасающихся поверхностей?
35. От каких параметров зависит сила трения скольжения?
36. От чего зависит сила сопротивления движению тела в жидкостях и газах?
37. Что называют весом тела? В чем заключается различие между весом тела и силой тяжести, действующей на тело?
38. В каком случае вес тела численно равен модулю силы тяжести?
39. Что такое невесомость? Что такое перегрузка?
40. Как вычислить вес тела при его ускоренном движении? Изменяется ли вес тела, если оно движется по неподвижной горизонтальной плоскости с ускорением?
41. как изменяется вес тела при его движении по выпуклой и вогнутой части окружности?
42. Каков алгоритм решения задач при движении тела под действием нескольких сил?
43. Какая сила называется Силой Архимеда или выталкивающей силой? От каких параметров зависит эта сила?
44. По каким формулам можно вычислить силу Архимеда?
45. При каких условиях тело, находящееся в жидкости плавает, тонет, всплывает?
46. Как зависит глубина погружения в жидкость плавающего тела от его плотности?
47. Почему воздушные шары наполняют водородом, гелием или горячим воздухом?
48. Объясните влияние вращения Земли вокруг своей оси на значение ускорения свободного падения.
49. Как изменяется значение силы тяжести при: а) удалении тела от поверхности Земли, Б) при движении тела вдоль меридиана, параллели

Физическим маятником называется твердое тело, способное совершать колебания под действием силы тяжести относительно неподвижной оси О 1 , не проходящей через его центр тяжести. Таковым является однородный металлический стержень массой m и длиной L, подвешенный на оси О 1 , удаленной от центра масс О на величину l .

Гармонические колебания -- колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.

Физический маятник совершает гармонические колебания , если они происходят в результате воздействия на точку силы, пропорциональной смещению колеблющейся точки от положения равновесия и направленной противоположно этому смещению.

На любое реальное тело, совершающее гармонические колебания, действуют не только квазиупругая сила, но и силы трения или сопротивления, препятствующие движению.

На преодоление трения в опорах и сопротивления окружающей среды, на создание упругих деформаций, возбуждение волн и т.д. требуется энергия. Поэтому полная механическая энергия колеблющейся частицы непрерывно уменьшается, переходя в другие виды энергии в виде тепла, или рассеивается в окружающей среде. Это сразу же скажется на величине амплитуды. Она будет уменьшаться, т.е. колебания постепенно будут затухать, пока не прекратятся совсем.

Колебания называют затухающими , если убыль энергии физической системы не восполняется в процессе ее колебательного движения.

В природе и технике широко распространены колебания, называемые гармоническими.

Гармоническими являются колебания, которые происходят под действием силы, пропорциональной смещению колеблющейся точки и направленной противоположно этому смещению.

Вы уже знаете, что под действием такой силы происходят колебания пружинного маятника, поэтому при определённых условиях они могут служить примером гармонических колебаний (в частности, при условии, что на них не оказывает заметного влияния сила трения).

С помощью опыта, изображённого на рисунке 63, выясним, по какому закону меняется с течением времени координата колеблющегося пружинного маятника и как выглядит график этой зависимости.

Рис. 63. Опыт по исследованию зависимости от времени координаты пружинного маятника, совершающего колебания

В данном опыте в качестве груза берут какой-нибудь небольшой массивный сосуд с маленьким отверстием снизу (например, воронку), а под него кладут длинную бумажную ленту. Сосуд с предварительно насыпанным в него песком (или налитой красящей жидкостью) приводят в колебательное движение. Если ленту перемещать с постоянной скоростью в направлении, перпендикулярном плоскости колебаний, то на ней останется волнообразная дорожка из песка, каждая точка которой соответствует положению колеблющегося груза в тот момент, когда он проходил над ней.

На рисунке 64 показан вид полученной кривой. Она называется косинусоидой (из курса математики старших классов вы узнаете о том, что аналогичные графики имеют функции типа у = sin х и у = cos x при переменной х). Через точки, соответствующие положению равновесия маятника, проведена ось времени t, а перпендикулярно ей - ось смещения х.

Рис. 64. График зависимости координаты колеблющегося пружинного маятника от времени

Из графика видно, что наибольшие отклонения груза от положения равновесия в обе стороны одинаковы по модулю и равны амплитуде колебаний А.

Маятник начал движение из крайней точки с координатой х = А. За время, равное периоду Т, маятник совершил полное колебание, т. е., миновав положение равновесия, дошёл до противоположной крайней точки с координатой х = -А, на мгновение задержался в ней, изменив направление скорости на противоположное, затем пошёл в обратном направлении и, вторично пройдя через положение равновесия, вернулся в то же самое место, откуда начал движение. Затем начинается следующее колебание и т. д.

Если в ходе опыта был измерен промежуток времени t, за который маятник совершил показанные на графике колебания, то можно определить их период Т, разделив это время на число колебаний: Т = t/N . Зная период, можно найти частоту колебаний: v = 1/T.

График даёт возможность приблизительно определить координату груза в любой момент времени. Например, через ⅓Т от момента начала первого колебания груз находился в точке с координатой x 1 .

Если график зависимости координаты от времени какого-нибудь тела представляет собой синусоиду (косинусоиду), т. е. если координата меняется со временем по закону синуса (косинуса), то в этом случае говорят, что и координата, и само тело совершают гармонические колебания.

  • Периодические изменения во времени физической величины, происходящие по закону синуса или косинуса, называются гармоническими колебаниями

На рисунке 65 изображён опыт, аналогичный рассмотренному выше, только для нитяного маятника. С помощью этого опыта можно показать, что и для нитяного маятника график зависимости координаты от времени тоже представляет собой синусоиду, т. е. что его колебания являются гармоническими.

Рис. 65. Гармонические колебания нитяного маятника

Теоретически колебания нитяного маятника были бы строго гармоническими в том случае, если бы он представлял собой материальную точку, колеблющуюся без трения с малой амплитудой 1 при не меняющемся со временем расстоянии от неё до точки подвеса. (Можно доказать, что только при этих условиях сила, возвращающая точку в положение равновесия, будет прямо пропорциональна смещению, вследствие чего колебания будут происходить по гармоническому закону, т. е. по закону изменения синуса или косинуса.)

  • Материальная точка, колеблющаяся на не меняющемся со временем расстоянии от точки подвеса, называется математическим маятником

Математический маятник - это абстрактная модель, реально таких маятников не бывает.

Практически колебания, близкие к гармоническим, совершает тяжёлый шарик (например, стальной), подвешенный на лёгкой и малорастяжимой нити, длина которой значительно больше диаметра этого шарика, при малой амплитуде и малом трении.

При совершении телом гармонических колебаний не только его координата, но и такие величины, как сила, ускорение, скорость, тоже изменяются по закону синуса или косинуса. Это следует из известных вам законов и формул, в которых указанные величины попарно связаны прямо пропорциональной зависимостью, например F x = -kx (закон Гука), а х = F x /m (второй закон Ньютона). Из этих формул следует, что сила и ускорение достигают наибольших значений, когда колеблющееся тело находится в крайних положениях, где смещение наиболее велико, и равны нулю, когда тело проходит через положение равновесия. Значит, колебательное движение вблизи среднего положения тела наиболее близко к равномерному, а вблизи крайних положений сильно отличается от равномерного движения. Скорость же, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия достигает наибольшего значения.

Вопросы

  • По рисунку 63 расскажите о цели, порядке выполнения и результатах изображённого опыта.
  • Чему соответствуют отрезки ОА и ОТ на графике (см. рис. 64)?
  • Какие колебания называются гармоническими?
  • Что можно показать с помощью опыта, изображённого на рисунке 65?
  • Что называется математическим маятником?
  • При каких условиях реальный нитяной маятник будет совершать колебания, близкие к гармоническим?
  • Как меняются действующая на тело сила, его ускорение и скорость при совершении им гармонических колебаний?

1 Напомним, что под малой подразумевается такая амплитуда, при которой траекторию движения маятника можно считать прямолинейной. Числовое значение амплитуды, удовлетворяющее этому условию, зависит от точности результата, требуемой в решаемой задаче. В большинстве практических задач малой можно считать амплитуду, если угол отклонения не превышает 8°.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Ранее развитие дома: занятия с шестимесячным ребенком Ранее развитие дома: занятия с шестимесячным ребенком Стрижки по форме лица для женщин и девушек Стрижки по форме лица для женщин и девушек Разводы в молодых семьях Разводы в молодых семьях