Закон сохранения энергии ньютона. Закон сохранения и превращение энергии. Формулировка и определение закона сохранения и превращения энергии

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

В начале этой главы мы говори­ли, что энергия, как и импульс, сохраняется. Однако когда мы рас­сматривали кинетическую и потен­циальную энергии, об их сохранении ничего не говорилось. В чем же состоит закон сохранения энергии?

Рассмотрим, как изменяется энер­гия тел, взаимодействующих только друг с другом. Такие системы, как мы знаем, называются замкнутыми. Такая система может обладать и кинетической и потенциальной энер­гией. Кинетической - потому, что тела системы могут двигаться, по­тенциальной - потому, что тела сис­темы взаимодействуют друг с другом. И та и другая энергия системы может изменяться с течением вре­мени.

Обозначим через E р1 потенциаль­ную энергию системы в какой-то момент времени, а через E k 1 общую кинетическую энергию системы тел в тот же момент времени. Потен­циальную и кинетическую энергии этих же тел в какой-нибудь другой момент времени обозначим соответ­ственно через Е Р2 и E k 2

В предыдущих параграфах мы установили, что, когда тела взаимо­действуют друг с другом силами тяжести или упругости, совершенная этими силами работа равна взятому с противоположным знаком изме­нению потенциальной энергии тел системы:


С другой стороны, согласно тео­реме о кинетической энергии, эта же работа равна изменению кинети­ческой энергии:

A = E k2 – E k1 (2)

Энергия превращается из одного вида в другой.

В левых частях равенств (1) и (2) стоит одна и та же величина - работа сил взаимо­действия тел системы. Значит, и правые части равны друг другу:

E k2 - E k 1 = - (Ep 2 - Ep 1). (3)

Из этого равенства видно, что кинетическая и потенциальная энер­гия в результате взаимодействия и движения тел изменяется так, что увеличение одной из них равно уменьшению другой. На сколько одна из них возрастает, на столько другая уменьшается. Дело выглядит так, как будто бы происходит превращение одного вида энергии в другой. В этом состоит важная особенность величины, называемой энергией: есть различные формы энергии, и они могут превращаться одна в другую. Но ни об одной из них нельзя сказать, что она сохраняется.

Полная механическая энергия. Закон сохранения полной механи­ческой энергии.

Если из двух видов энергии один уменьшается ровно на столько, на сколько увеличивается другой, то это значит, что сумма энергий обоих видов остается неиз­менной. Это видно из формулы (3), которую можно переписать так:

E k 2 + Ep 2 = E k 1 + Ep 1 . (4)

В левой части равенства мы видим сумму кинетической и потен­циальной энергий системы тел в ка­кой-то момент времени, в правой - ту же сумму в другой момент времени. Эта сумма называется полной механической энергией систе­мы. Для системы тел, в которой действует сила тяжести, например для системы «Земля - падающее тело» или «Земля - тело, брошенное вверх», она равна mgh+mv 2 /2 .



Если между телами системы действует сила упругости, то полная механи­ческая энергия запишется так:

kx 2 /2 + mv 2 /2

Равенство (4) означает, что пол­ная механическая энергия замкнутой системы тел остается неизменной, сохраняется. В этом состоит закон сохранения энергии.

Полная механическая энергия замкнутой системы тел, взаимодей­ствующих силами тяготения или си­лами упругости, остается неизменной при любых движениях тел системы.

Превращения энергии и работа.

Тот факт, что одна и та же работа приводит к увеличению кинетической или к такому же уменьшению по­тенциальной энергии, означает, что работа равна энергии, превратив­шейся из одного вида в другой. Мы видели, например, что поло­жительная работа силы равна умень­шению потенциальной энергии. Но, согласно закону сохранения полной энергии, потенциальная энергия не может уменьшаться, не превратив­шись в энергию кинетическую!

Закон сохранения энергии, как и закон сохранения импульса, можно использовать для решения многих механических задач. Этим способом многие задачи решаются более прос­то, чем при прямом применении законов движения.

1. Что такое полная механическая энер­гия?

2. В чем состоит закон сохранения ме­ханической энергии?

3. Выполняется ли закон сохранения ме­ханической энергии, если действуют одно­временно и сила тяжести и упругая сила?

4. Как влияет на энергию системы тел действие внешней силы? Сохраняется ли в этом случае полная механическая энергия? 5. Спутник вращается по орбите вокруг Земли. С помощью ракетного двигателя его перевели на другую орбиту. Измени­лась ли его механическая энергия?

Механическую, ядерную, электромагнитную, и т.д. Однако пока будем рассматривать только одну ее форму - механическую. Тем более что с точки зрения истории развития физики, она начиналась с изучения сил и работы. На одном из этапов становления науки был открыт закон сохранения энергии.

При рассмотрении механических явлений используют понятия кинетической и Экспериментально установлено, что энергия не исчезает бесследно, из одного вида она превращается в другой. Можно считать, что сказанное в самом общем виде формулирует закон сохранения

Сначала надо отметить, что в сумме потенциальная и тела называются механической энергией. Далее необходимо иметь в виду, что закон сохранения справедлив при отсутствии внешнего воздействия и дополнительных потерь, вызванных, например, преодолением сил сопротивления. Если какое-то из этих требований нарушено, то при изменении энергии будут происходить ее потери.

Самый простой эксперимент, подтверждающий указанные граничные условия, каждый может провести самостоятельно. Поднимите мячик на высоту и отпустите его. Ударившись об пол, он подскочит и потом опять упадет на пол, и опять подскочит. Но с каждым разом высота его подъема будет меньше и меньше, пока мяч не замрет неподвижно на полу.

Что мы видим в этом опыте? Когда мяч неподвижен и находится на высоте, он обладает только потенциальной энергией. Когда начинается падение, у него появляется скорость, и значит, появляется кинетическая энергия. Но по мере падения высота, с которой началось движение, становится меньше и, соответственно, становится меньше его потенциальная энергия, т.е. она превращается в кинетическую. Если провести расчёты, то выяснится, что значения энергии равны, а это означает, что закон сохранения энергии при таких условиях выполняется.

Однако в подобном примере есть нарушения двух ранее установленных условий. Мяч движется в окружении воздуха и испытывает сопротивление с его стороны, пусть и небольшое. И энергия затрачивается на преодоление сопротивления. Кроме того, мяч сталкивается с полом и отскакивает, т.е. он испытывает внешнее воздействие, а это второе нарушение граничных условий, которые необходимы, чтобы закон сохранения энергии был справедлив.

В конце концов скачки мяча прекратятся, и он остановится. Вся имеющаяся первоначальная энергия окажется потраченной на преодоление сопротивления воздуха и внешнего воздействия. Однако кроме превращения энергии окажется выполненной работа по преодолению сил трения. Это приведёт к нагреванию самого тела. Зачастую величина нагрева не очень значительная, и ее можно определить только при измерении точными приборами, но подобное изменение температуры существует.

Кроме механической, есть и другие виды энергии - световая, электромагнитная, химическая. Однако для всех разновидностей энергии справедливо, что из одного вида возможен переход в другой, и что при таких превращениях суммарная энергия всех видов остаётся постоянной. Это является подтверждением всеобщего характера сохранения энергии.

Здесь надо учесть, что переход энергии может означать и её бесполезную потерю. При механических явлениях свидетельством этого будет нагрев окружающей среды или взаимодействующих поверхностей.

Таким образом, простейшее механическое явление позволило нам определить закон сохранения энергии и граничные условия, обеспечивающие его выполнение. Была установлено, что осуществляется преобразование энергии из имеющегося вида в любой другой, и выявлен всеобщий характер упомянутого закона.

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

Полная механическая энергия замкнутой системы тел остается неизменной


Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.


В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 - это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
С чем носить темно-синее пальто: шарф, шапка, обувь Синее прямое пальто с чем носить С чем носить темно-синее пальто: шарф, шапка, обувь Синее прямое пальто с чем носить Пасхальный цыпленок крючком: очаровательный подарок к Пасхе своими руками Пасхальный цыпленок крючком: очаровательный подарок к Пасхе своими руками Ранее развитие дома: занятия с шестимесячным ребенком Ранее развитие дома: занятия с шестимесячным ребенком